
Object Membership
The Core Structure of Object Technology

An abstract structure is described that is believed to be central to object-
oriented programming and modelling. In its main form, the structure is built
from three relations between objects: ϵ, ≤ and .ec. The most fundamental
relation, ϵ, is called object membership and is a refinement of the instance-of
relation. The ≤ relation is the inheritance between objects. Finally, .ec is a
partial map that forms a distinguished subrelation of ϵ.

The structure arises as a generalization of the innermost core of the object
model of the Ruby programming language. In Ruby, the .ec map is total –
every object has an eigenclass. The following equalities hold:

(≥) = (.ec) ○ (϶)   and   (ϵ) = (.ec) ○ (≤).
The second equality says that object membership is the composition of infinite
regress of eigenclasses with inheritance.

As an essential feature, the structure supports circular objects, i.e. objects x
such that x ϵ x. This is also the main indicator of applicability. It is shown how
the structure applies to class-based programming languages (Ruby, Python,
Java, Scala, Smalltalk, Objective-C, CLOS, Perl and Dylan), prototypal
languages (JavaScript), and ontology languages (RDF Schema, OWL Full).

A general mathematical structure of object membership is described in an
affiliate document [46]. A gradual set-theoretic representation is provided with
the exact correspondence of ϵ, ≤, .ec and derived constituents of the structure
to fundamental notions of set theory.

As a result, a uniform and mathematically precise view of an essential part
of object technology is provided.
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Introduction

This document focuses on the core structure of object technology. We use the this term in accordance to the
Journal of Object Technology [60] for a generalization of object-oriented programming (OOP) so that also other
"OO"-terms are included. Basically, we are interested in object models [6]. The word "model" indicates that
something is abstractly represented in a structured way. The word "object" indicates uniformity – there is a
uniform unit of representation called object.

The approach

We can further combine the terms from the previous paragraph and say that an object model is itself based on
an abstract structure between objects. The term structure between objects can be further interpreted as family of
relations between objects. The term abstract suggests abstraction. For every non-trivial object model M there is a
hierarchy of models that are abstractions of M. Around the top of the hierarchy there are core structures – they
are formed by the most fundamental relations between objects.

This document identifies the following three relations as the core relations of object technology:
ϵ, the object membership relation, is the most fundamental relation between objects. It is a generalization of
the instance-of relation.
≤, the inheritance relation, is considered the second most important.
.ec, the powerclass map, is an auxiliary, possibly empty, one-to-one subrelation of ϵ.

Since abstraction is one of the most fundamental principles of object technology, we can characterize our
approach as

applying object technology to itsef.

Introductory sample

The diagram below shows an example of a core structure of object technology. Objects are displayed as nodes.
The inheritance relation, ≤, is shown by green arrows in the reduction to immediate pairs. Object membership, ϵ,
is the composition of blue arrows with inheritance. The powerclass map, .ec, is indicated by horizontal blue
arrows.

c

A

B

u
v

r

s

(Ruby 1.9)

r = BasicObject
c = Class
A = c.new(r)
B = c.new(A)
s = A.new
u = B.new
v = B.new

class << s; end
class << v; end

The code on the right shows how the structure can be obtained in the Ruby programming language as a part of
data structure of a running program.
Notes:  (See Ruby core sample.)
1. c and r are only immediate in the partial structure, restricted to chosen objects. In the complete Ruby built-

in structure, there are 2 objects between c and r.
2. In order to demonstrate the possible partiality of the .ec map, we deviate from the canonical interpretation

supported further in the document. In Ruby, we consider .ec to be a total map.

The objective
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•
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The objective

The objective of this document is to rigorously describe structures that arise from ϵ, ≤ and .ec. That is, using the
conventions in the diagram above, the document is preoccupied with the following question:

What can be said about the blue and green arrows?

For instance, it can be said that there cannot be an additional green arrow from r to s in the sample structure.
Therefore, what the document essentially contains is an axiomatic description of families of structures that arise
from the three core relations. Since the relations are fundamental, their description should contribute to
foundations of object technology. Presumably, the above question can be stated as

What is the mathematical structure for the
most fundamental part
utmost simplification
highest abstraction

of object technology?

Naturally, there is no universal description for all specific cases. We have to define idealizations on which the
specific cases are based.

The ϵ  ≠ ∅ condition and circularity

Structures in which ϵ  is empty (that is, the composition of ϵ with itself is an empty relation) have a simple
description which is provided in a single introductory section. The complementary condition ϵ  ≠ ∅ can be
expressed as the classes are objects principle. (By convention, the phrase also indicates that the structure is not
"classless".)

This document is predominantly concerned with structures satisfying ϵ  ≠ ∅. That is, x ϵ y ϵ z for some (not
necessarily distinct) objects x, y and z. It turns out that in all the introduced structures, the following stronger
condition holds:

There exists an object x such that x ϵ x.

This circularity condition is perhaps the best indicator for the issues handled in this document. Another good
indicator is the presence of the notion of metaclass. Being a metaclass mostly implies being in the image of ϵ .
Therefore, support for metaclasses is dependent on the ϵ  ≠ ∅ condition. In the affiliated document [51] the
metaclass term is used as a label for our approach to object technology.

The non-objective

The focus being on the core structure of the object model, many notions of object-oriented programming occur
outside the scope of this document. This should be in particular emphasized for the notion of type. This
document provides no explicit explanation as to what a type is. Maybe the document provides an implicit
explanation but the author is unaware of it.

The concept of type is regarded as something more complex (an therefore less fundamental) than things
described in this document. We use the term "type" exclusively as a mean of quotation (reference) of particular
concepts by other parties (e.g. "types" as particular objects in Dylan, or "abstract power type system" for the
abstract structure of Cardelli's power types).

As a consequence, this document becomes virtually disjoint with the following two books, both of which claim
to provide foundations of object-oriented programing. (The "metaclass" term can be used as an indicator for the
disjointness. There is no occurrence of this word in either of the books. Similarly for "meta-class", cf. [51].)

A Theory of Objects by Martin Abadi and Luca Cardelli [1].
Excerpt from the Preface: [1a] This book develops a theory of objects as a foundation for object-
oriented languages and programming. Our theory provides explanations for object-oriented notions in
terms of a few basic primitives, and can be useful for the design and understanding of programming
languages.

Foundations of Object-Oriented Programming Languages: Types and Semantics by Kim B. Bruce [8]
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Excerpt from the publisher's overview: [8a] This text explores the formal underpinnings of object-
oriented languages to help the reader understand the fundamental concepts of these languages and
the design decisions behind them.

Composition of ϵ and ≤

It will be convenient for further reference to already introduce the following composition rules for ϵ and ≤:

Rule name Short expression Using variables Set-theoretic counterpart RDFS rule(s)
Transitivity of ≤ (≤) ○ (≤) ⊆ (≤) if x ≤ y ≤ z then x ≤ z (⊆) ○ (⊆) ⊆ (⊆) rdfs11 (and rdfs5)
Subsumption of ϵ (ϵ) ○ (≤) ⊆ (ϵ) if x ϵ y ≤ z then x ϵ z (∈) ○ (⊆) ⊆ (∈) rdfs9
Monotonicity of ϵ (≤) ○ (ϵ) ⊆ (ϵ) if x ≤ y ϵ z then x ϵ z

These rules can be observed to be satisfied by the introductory sample. We even have used the first two
conditions to reduce the set of displayed arrows: The set of green arrows is the transitive reduction of ≤ and the
set R of blue arrows in the diagram is minimum such that R ○ (≤) = (ϵ). We could even have had further
reduced the set of displayed blue arrows by applying the mononicity rule. The resulting subrelation of ϵ would
be the minimum relation S such that (ϵ) = (≤) ○ S ○ (≤). (In the case of the sample, S = (.ec) ∪ {(u,B)}.)

The table also indicates that ⊆ (set inclusion) and ∈ (set membership) are the respective set-theoretic
counterparts in of ≤ and ϵ. However, the latter correspondence is indirect – we will further introduce ∊, a
restriction of ϵ, to be the direct correspondent of ∈, see Set-theoretic interpretation.

In contrast to subsumption, the monotonicity rule has no set-theoretic counterpart. In set theory, it is not true
that for every sets x, y, z,   if x ⊆ y ∈ z then x ∈ z. (For example, if x ⊂ y ∈ {y} then x ∉ {y}.) Nevertheless,
monotonicity of ϵ is satisfied in the major part of object technology. The "monotonicity" term comes from the
following equivalent formulation: for every objects x, y,

x ≤ y → x.ϵ ⊇ y.ϵ
where u.ϵ is the set of all containers of u (the image of {u} under ϵ). In particular, in canonical primary
structures, the condition can be expressed as monotonicity of the .class map, i.e. for every objects x, y,

x ≤ y → x.class ≤ y.class.   (If x is a subclass of y then x.class is a subclass of y.class.)
This is known as the metaclass compatibility condition [21].

Main results

This document builds a mathematical model that is presumably relevant to the core part of object technology.
The following fundamental notions of computer science can be rigorously described in terms of the model:

• class • instance-of • class-of
• metaclass • inheritance • eigenclass-of
• eigenclass • isa • singleton-of

It is shown how the model applies to class-based programming languages (Ruby, Python, Java, Scala,
Smalltalk, Objective-C, CLOS, Perl and Dylan), prototypal languages (JavaScript), and ontology languages
(RDF Schema, OWL Full). The following characteristics can be observed:

The Ruby programming language is the definitive sample language for the description of the object model.
The Ruby object model (ROM) provides a clean and robust implementation of the core structure. In fact, the
work on this document originated in discovering the exquisite properties of ROM.
The Python programming language can be thought of as complementary to Ruby w.r.t. core structure. The
most part of the core structure of object technology can be described by combining Ruby and Python.
The Smalltalk-80 programming language is the biggest obstacle to understanding the above fundamental
notions of object technology.
The JavaScript programming language can be thought of as a class-based language with prototypes as
inverse eigenclasses.

On the other hand, it is shown how the model can be embedded into the universe of sets. This results in a set-
theoretical foundation of the core part of object technology.
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Basic structure

The general mathematical model of "The Core" is provided by the family of basic
structures. The diagram on the right shows the signature of these structures. In addition to
the ϵ, ≤ and .ec relations mentioned in the introduction there are additional constituents:

ϵ , the power membership relation, is an abstraction of the composition (.ec) ○ (≤).
ϵ , for every natural i > 0, are the negative powers of membership, which are
abstractions of (≤) ○ .ec(-i), where .ec(-i) is the i-th relational composition of the
inverse of .ec.
.ɛɕ is the primary singleton map, an auxiliary subrelation of ϵ that is an abstraction of
set membership between non-singleton sets and singleton sets.

Objects are abstractions of sets in a suitable partial universe of well-founded sets. The universe is limited by a
rank – both from above and below. In particular, the empty set is not considered to belong to the universe.

r, the inheritance root, is a distinguished object, that is an abstraction of the largest set within the partial
universe.

The axioms of basic structures are provided in a dedicated section. Moreover, there are two distinguished
derived subrelations of ϵ:

.ɛϲ is the singleton map – an abstraction of set membership between (arbitrary) sets and singleton sets,
∊ is the bounded membership relation, which is an abstraction of (.ɛϲ) ○ (≤) and thus an abstraction of set
membership within the partial universe.

Finally, the most fundamental three relations ϵ, ≤ and .ec have the following semantics:
≤ is an abstraction of set inclusion.
.ec is an abstraction of a relativized powerset operator. That is, if x is an object that is an abstraction of the
set a, then x.ec is an abstraction of the set of all such subsets b of a such that both b and {b} belong to the
partial universe. Since the empty set does not belong to the universe, .ec and .ɛϲ are coincident on
singletons.
ϵ equals (∊) ∪ (ϵ).

Distinguished subfamilies

The following distinguished families of basic structures can be singled out:
Metaobject structures are those in which .ec is total and .ɛϲ is defined for every object whose rank is not
maximal. They can be presented in the signature (O, ≤, r, .ec, .ɛϲ).
Complete structures are partial universes with urelements, devoid of the empty set. They are superstructures
cumulatively built from the ground stage of memberless objects. They can be expressed as (O, ∊) – that is,
∊ is the only definitory constituent, just like ∈ in set theory.
Monotonic structures arise from the (abstract) monotonicity condition (ϵ) = (ϵ) which is present virtually in all
object-oriented programming. Though not imposed in ontological languages such as RDF Schema, it can be
assumed that most real datasets are subject to monotonicity. (In particular, the built-in RDFS structure is
monotonic.)

In monotonic structures, the term "powerclass" is interchangeable with "eigenclass".
Monotonic eigenclass structures are monotonic structures in which .ec is total. This family can serve as the
"essential mathematical model" for the core structure of object technology. This is for the following reasons:

The monotonicity condition poses no restriction in most parts of object technology.
The .ec map can be completed for any basic structure.
The structures are axiomatized with 5 simple conditions which can be stated with only a few preliminary
definitions.
The structures are fully determined by ϵ:   x ≤ y ↔ x.ϵ ⊇ y.ϵ and .ec is the unique map such that
(ϵ) = (.ec) ○ (≤) (therefore, ϵ arises as the composition of infinite eigenclass regress with inheritance).

Canonical primary structures are based on the Python object model. They describe the instance-inheritance
structure that is thought to be canonical in the world of OOP.
Canonical eigenclass structures are based on the Ruby object model. In this document, these structures are
regarded as the standard core structures of OOP.
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Up to a minor difference, there is a duality between the two families of canonical structures: Canonical primary
structures are obtained from canonical eigenclass structures by omitting eigenclasses. Conversely, canonical
eigenclass structures are obtained from canonical primary structures by eigenclass completion.

Connection between ϵ and ≤

The powerclass (.ec) and singleton (.ɛϲ) maps provide a connection between membership (ϵ) and inheritance
(≤):

For every objects x, y,   in a monotonic eigenclass structure:  whereas in a metaobject structure:

x ϵ y.ec ↔ x ≤ y,
x ϵ y ↔ x.ec ≤ y,

x ϵ y.ec ↔ x ≤ y,
x ϵ y ↔ x.ɛϲ ≤ y or x.ec ≤ y.

Using the concise notation of relational composition,
(.ec) ○ (϶) = (≥) and (ϵ) = (.ec) ○ (≤)   in a monotonic eigenclass structure,
(.ec) ○ (϶) = (≥) and (ϵ) = ((.ɛϲ) ∪ (.ec)) ○ (≤)   in a metaobject structure.

In monotonic structures, the singleton map .ɛϲ is a submap of .ec. The singletons are exactly the powerclasses
from powerclass chains that start in terminal objects – which are objects that do not have any members or strict
inheritance ancestors. (In the sample structure, s, u and v are terminals and s.ec = s.ɛϲ and v.ec = v.ɛϲ are
singletons.)

Set-theoretic interpretation

Set-theoretic interpretation of basic structures is summarized by the table below. Any basic structure SS can be
identified with a set O in the von Neumann universe of well-founded sets. Let ℙ denote the standard powerset
operator, that is, for a set x, ℙ(x) is the set of all subsets of x. Moreover, let ℙ₁(x) be the set of singleton subsets
of x. The constituents of SS are then obtained as follows:

Terminal objects T   =  O ∩ ℙ₁(∪O ∖ O)
Inheritance root r   =  ∪O ∖ ∪T

For every x, y from O :
Bounded membership  x ∊ y   ↔  x ∈ y
Inheritance x ≤ y   ↔  x ⊆ y
Singleton map x.ɛϲ = y   ↔  {x} = y
Powerclass map x.ec = y   ↔  r ∩ ℙ(x) = y
Power membership x ϵ  y   ↔  r ∩ ℙ(x) ⊆ y
Object membership x ϵ y   ↔  r ∩ ℙ(x) ⊆ y or x ∈ y

Simple cases of ϵ

To proceed further with the description of ϵ, ≤ and .ec (even before giving an account on history of
implementation and documentation of these structures) we first do away with simple cases:
I. ϵ = ∅ (⁎)  (purely prototypal structures),
II. ϵ ≠ ∅ and ϵ  = ∅   (bipartite structures).

For convenience, we also present the condition for the remaining (i.e. non-simple) cases:
III. ϵ  ≠ ∅   (basic structures of ϵ and their specializations).
Note: (⁎) This case relates to prototype-based programming languages and is more carefully handled in [51]. An
alternative interpretation is proposed, in which ϵ is equal to ≤.

Purely prototypal structures
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Purely prototypal object models are those which deny to institutionalize any concept of a classification. In
accordance, a pp-core structure is a structure (O, ≤) such that

(pp~1) ≤ is a partial order on O.
By not presenting ϵ and .ec in the signature it is implicitly understood that these relations are both empty.

We do not consider all prototype-based programming languages to have a purely prototypal core structure. In
particular, in JavaScript [17], ϵ ≠ ∅. We base this judgement on the following observations:

The expression x instanceof y can evaluate to true for some x and y.
The notion of a class is supported in authoritative books about JavaScript [19].

Bipartite structures

Bipartite structures represent a two-sorted view of ϵ which is characteristic for static class-based languages like
C++ or Eiffel.

By a bipartite primary structure we mean a structure (O, ϵ, ≤) where
O is a set,
ϵ is the instance-of relation on O,
≤ is the inheritance relation on O.

Let us denote T = O.϶, the pre-image of O under ϵ, and call elements of T instances. Elements of the
complementary set C = O ∖ T are classes. The structure is subject to the following conditions.

(bp~1) Inheritance, ≤, is a partial order. In particular, its reflexive reduction < is acyclic.
(bp~2) (a) (<) ○ (ϵ) = ∅.   (b) (ϵ) ○ (ϵ) = ∅. 

That is, instances have (a) no strict descendants and (b) no instances.
(bp~3) (ϵ) ○ (≤) ⊆ (ϵ).   (The subsumption rule.) 

That is, every class has ("inherits") all instances of its ancestors.
(bp~4) Every instance x has a least container, x.class. 

As a consequence, there is a unique map .class from T to C such that (ϵ) = (.class) ○ (≤).
(Observe that this equality implies the subsumption rule.)

Similarly to the previous case, it is assumed that .ec is empty. (This is also indicated by the adjective primary
since in theory, there can be bipartite structures that support .ec on T. However no such occurrence in object
technology is known to the author.) We might consider the additional condition of a single-rooted inheritance
(which is not satisfied in C++). On the other hand, (bp~4) is not to be imposed on ontology languages.

Note that we did not mention the word "object" anywhere in the definition. This is because we have disobeyed
the two-sortedness – we unified the sorts T and C into one set O. In the two-sorted view of ϵ the term "object" is
exclusively reserved for elements of T. This is expressed by:

Classes are not objects.   (See e.g. [6], page 93.)
This is in opposition to our approach. We consider the core structure to be single-sorted – there is a uniform
domain O of objects on which the relations ϵ, ≤ and .ec are defined. In particular,

Classes are objects.
The following table shows a division of significant representants of object technology according to the
composability of ϵ. Note that there is a middle group which takes a neutral approach:

For every class x, the reificiation of x (x.reif) is an object.
The point of it is that "reification" can be overridden by "identity". This approach seems to be supported in
particular by the Java programming language. In Java, the names of introspection methods like getClass() or
getSuperclass() suggest that it is a class what is returned, rather than its reification. In the book Java
reflection in action [22], both agreement and disagreement to the uniformity principle can be observed.
(According to page 23, "classes are objects". According to page 268, there is a "distinction between class and
class object".)
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Group Composability of ϵ Programming Languages Ontology Languages
(A) ∅ = (ϵ) ○ (ϵ) C++, Eiffel PHP OWL 2 DL
(B) ∅ ≠ (ϵ) ○ (.reif) ○ (ϵ) Java, Scala, C# —

(C) ∅ ≠ (ϵ) ○ (ϵ) Ruby, Python, Smalltalk, Objective-C, CLOS,
JavaScript

RDF Schema, OWL 2
Full

Overview of atalon.cz and related documents

There are several documents at atalon.cz that are concerned with the core structure of object technology.
Object Membership – The Core Structure of Object Technology (this document).

This is the main document that provides an introduction to the subject as well as synthesis of other
documents.
Object Membership – Basic Structure. [46]

The document describes the ultimate mathematical model of "The Core" and its connection to set theory.
In particular, it is shown that object membership, ϵ, arises by the following fundamental equality:

(ϵ) = (∊) ∪ (ϵ)
where ∊ is the "bounded" part, a well-founded relation, and ϵ  is the "monotonic" part. The main
correspondence between (the core structure of) object technology and set theory can be then expressed as

∊   ↔   ∈.
If objects have sufficiently many bounded members and .ec is total, then all of ϵ, ≤ and .ec are determined
by ∊ so that the core structure can be expressed as (O, ∊). In a complete structure, every non-empty
subset of O.∍ equals the extension x.∍ of a unique object x. Such a structure looks like a partial universe of
sets, given by the pair (ϖ+1, κ), where ϖ is a limit ordinal that is the rank of the inheritance root r, and κ is
the cardinality of the ground stage of urelement-like sets. Every basic structure can be embedded into such
a partial universe.
Object Membership: Simplified Structure. [47]

The assumption of monotonicity ((ϵ) = (ϵ)) and of totality of .ec results in the family monotonic eigenclass
structures. This family has a simple description (simpler than the general case of basic structures) which is
provided in the referred document. The restrictions can be considered acceptable:

The monotonicity condition holds for the majority of object-oriented programming and modelling.
Every basic structure has a powerclass completion.

A complete monotonic structure (O, ∊) is obtained from a complete basic structure (V, ∊) by the restriction
to hereditarily ↧-complete objects, i.e. O = { x | x.∍ = x.∍.↧ ⊆ O } .
Object Membership: The core structure of object-oriented programming. [44]

Historically, this document introduced the term object membership (together with the ϵ symbol) and
originally was the main document. The (canonical) core structure of OOP arises by unifying core structures
of Ruby and Python. It can be viewed as either the Ruby core structure with multiple inheritance and user-
created explicit metaclasses allowed, or the Python core structure equipped with eigenclasses.

The core structures of Java, Scala, Smalltalk, Objective-C, CLOS or Perl are viewed as modifications of
the canonical structure. (See also Specializations of ϵ.) Additionally, refinement structures are described
which provide linearization of object's ancestors.
Object Membership: The ontological structure. [45]

The document provides a generalization of object membership as it applies to ontological structures
based on RDF Schema. In contrast to object-oriented programming the following features are present:

An object x can have multiple minimum classes of which x is an instance.
There is a distinguished "sort" of objects, called properties. Like terminals, properties are not
descendants of the inheritance root. Unlike terminals, properties can have descendants.
Inheritance does not have to be antisymmetric – classes and properties can have distinct equivalents.

A summary is provided in the Ontological structure of ϵ section.
Object Membership with Prototypes. [49]

As already observed on the example of the JavaScript programming language, prototype-based
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languages cannot be, in general, declared to be "classless" or to be devoid of the instance-of relation
(despite the traditional view [68a]). Moreover, it can be observed that in the JavaScript core structure (O,
ϵ, ≤, r, .ec), not only ϵ but also the .ec constituent is non-empty. The following correspondence holds:

x.ec = y   ↔   x == y.prototype.
That is, prototypes can be thought of as eigenclass predecessors of classes. A summary of the referred
document is provided in the Prototypes section.
Object Membership and Powertypes. [50]

The document provides an explanation of the notion of a powertype in terms of the core structure. In
particular, it is shown that, in a suitable axiomatic restriction, the Cardelli's Power() operator coincides with
.ec. That is, Cardelli's power types are powerclasses in the abstract setting. The only difference is that
Power(x) is only defined for Classes (called "types").

Subsequently, the adoption of powertypes in metamodelling is considered, as well as powertype
relationship in RDF Schema.
The Dialectic of Classes and Metaclasses in Smalltalk-80. [48]

Historically, the Smalltalk programming language is of fundamental importance to the core structure of
object technology:

Smalltalk-76 is the first language in which ϵ  ≠ ∅,
Smalltalk-80 is the first language in which .ec ≠ ∅.

Unfortunately, the .ec ≠ ∅ condition has not been reflected in the terminology or documentation of
Smalltalk-80. As a consequence, inconsistencies have been established and so Smalltalk-80 became the
biggest obstacle for the description of the core structure of OOP, at least for the author of this document.
The referred document collects evidence about the inconsistencies. A consistent resolution of the
terminology is provided in a special section.
What Is a Metaclass?. [51]

The document provides a more elaborate alternative to the present document. The title question is used
as a linguistic device for the exploration of the object model core in various contexts. There are about 20
investigated environments. The metaclass term is used as a label for an approach to OOP foundations. The
"metaclass approach" is based on four rules in the spirit of Occam's razor: (1) dispense with types, (2)
dispense with calculus, (3) support object identity, (4) assume metaclass pre-condition ("classes are
objects").
Featherweight Java Axiomatically. [52]

Featherweight Java is the most popular formalization of the most popular object-oriented programming
language. In the referenced document, the formalization is adjusted to provide a clear definition of the core
structure of the underlying data model.
The Ruby Object Model: Data Structure in Detail. [40]

The document provides a detailed description of the Ruby Object Model (as of version 1.9) via abstraction
refinement. The object model is incrementally specified in the series of abstract structures together with their
possible transitions. The most abstract, initial structure, denoted S0, just introduces the basic nomenclature
of objects: terminals, classes and eigenclasses. The next structure, S1, is the core structure of Ruby in the
sense introduced at the beginning of this document. The structure is (exactly what is) induced by superclass
and eigenclass links between objects. The yet subsequent structure, S2, equips S1 with module inclusion
lists so that the complete inheritance structure is established (referred to by MRO, which stands for method
resolution order). There is an in-between structure, denoted S1r in [44], which encompasses just the
extension of the Ruby's (canonical) object membership, ϵ, to the "full" membership, ϵ , which can be
introspected by the is_a? built-in method (see also Specializations of ϵ).

There are more than 20 structures in the gradual description. The resulting structure (still providing just an
abstraction of the Ruby object model, though far more detailed than S1) can be viewed as a naming
multidigraph, consisting of nodes and uniquely labelled arrows between them.
Ruby Object Model – S1 superstructure representation. [41]

The document provides a set-theoretic representation of the core structure of Ruby (again referred to as
the S1 structure) using the bottom stratum map .ϱ between objects in an (ω+1)-superstructure (V, ∈). In
contrast to the embedding presented in [46], the embedding from [41] maps all objects to elements of finite
stages. As a result, for objects x, y whose metalevel index is lower than a predefined number k,

x ≤ y   ↔ x.ϱ ⊆ y     and     x ϵ y   ↔ x.ϱ ∈ y.

2
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Ruby Object Model – The S1 structure. [42]
The document focuses on the description of the S1 structure using the material from the previous two

documents. In all these three documents, object membership is expressed in the composition (.ec) ○ (≤),
the ϵ symbol is missing. Moreover, ≤ is considered to be defined only between non-terminal objects.
Ruby Object Model: Comparison with Smalltalk-80. [43]

Historically, this document is the first description (available at atalon.cz) of the Smalltalk-80 correspondent
of the Ruby's S1 structure. The document can be regarded as a precursor to the dedicated section.

Eigenclass model (Wikipedia article)

The archived Wikipedia article titled Eigenclass model [68b] provides a synopsis of monotonic object
membership. The family of canonical eigenclass structures is introduced in the minimum signature (O, ϵ). The
general family of monotonic eigenclass structures is presented under the name "essential structure of ϵ".

The Wikipedia page en.wikipedia.org/wiki/Eigenclass_model containing the article has been created in
October 2012 by the author of this document. Several major edits followed until January 2013. In October 2013,
the page has been deleted (changed to a redirect to Ruby (programming language)#Semantics) by Wikipedia
administrators on the following grounds:

The article violates the NOR principle (No original research).
The term eigenclass model is not an established topic in computer science.

For those interested in the article there is a short list of corrections which I would apply if the page was not
deleted:

c(i) replace by c.ec(i)
"other that" "other than"
(p~4) extend with "and instances of each other".

History

The following table outlines the history of object models whose core structures satisfy ϵ  ≠ ∅. A more detailed
treatment is provided in [51] which focuses on the metaclass term.

Year Author(s) Introduced (or applied) concept Language(s)
1976 Daniel Ingalls [24] Classes are objects (ϵ  ≠ ∅) Smalltalk-76
1979 H. Levesque, J. Mylopoulos Metaclasses in knowledge representation [30]
1980 James Althoff [2] Implicit metaclasses (.ec defined for classes) Smalltalk-80
1983 D. Bobrow, M. Stefik [5] Explicit metaclasses LOOPS
1988 D. Bobrow, G. Kiczales [4] Explicit metaclasses with a monotonicity check CLOS
1988 Luca Cardelli [11] Power types Smalltalk-80
1992 Apple Computers, Inc. Universal singletons Dylan
1994 James Odell [37] Power types in metamodelling UML
1995 James Gosling The Class class in mainstream programming Java
1995 Yukihiro Matsumoto Hidden eigenclasses, not referenceable Ruby
1995 Keith Playford [54] Combining powerclasses with singletons Dylan
1995 Brendan Eich Prototypes as inverse eigenclasses JavaScript

1998 I. Forman and S. Danforth A book about metaclasses Java, Smalltalk, CLOS,
Dylan

2001 Guido van Rossum Fully monotonic explicit metaclasses Python 2.2

2002 World Wide Web
Consortium

Classes are resources (ϵ  ≠ ∅ in semantic
web) RDF Schema, OWL 2 Full

2004 Martin Odersky Metalevel-1-only eigenclasses/singletons Scala
Universal eigenclasses, fully monotonic 
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2008 Yukihiro Matsumoto et al. (.ec defined for all objects, lazily evaluated) Ruby 1.9.1
2012 Ondřej Pavlata (⁎) Formalization of monotonic ϵ with a total .ec (most of the languages

above and some others)2015 Formalization of basic structure of ϵ

(⁎) Show me a list of documents (articles, books), possibly hundreds of items long, that are not listed in the
previous section. If, in total, these documents say about the abstract structure of ϵ, ≤ and .ec more than one
tenth of what documents inside of atalon.cz say, then I remove my name from the table.

O.P.
Notes:
1. Bold font indicates that the introduction of Ruby is regarded in this document to be the most significant

contribution to the development of the core structure of object technology. We can guess that the Ruby core
structure has been created by rectification of Smalltalk-80 adopting the concept of universality of singletons
in Dylan. This is best illustrated by samples from Ruby, Smalltalk-80 and Dylan.

The core structure by Forman & Danforth

In 1998, a book by Ira R. Forman and Scott Danforth has been published, titled Putting Metaclasses to Work
[21]. The book provides an object model of class-based reflective programming languages using the concept of
a metaclass. With some effort, a reduction of this model can be made to the core structure, which concerns just
the ϵ and ≤ relations. A detailed description is provided in [51].

Preliminaries

Some familiarity with elementary algebra, order theory and set theory is assumed. See [46] for details.

Well-foundedness

For a relation ϵ on a set X, an element x ∈ X is well-founded in ϵ if x is not a member of an infinite descending
chain in ϵ, i.e. if there is no infinite chain of the form

… x2 ϵ x1 ϵ x0 = x.
A relation ϵ on a set X is well-founded if all elements x ∈ X are well-founded in ϵ. Assuming the axiom of choice,
this is equivalent to the condition that every non-empty subset Y ⊆ X contains an element y that is minimal in
(Y,ϵ), i.e. there is no u from Y such that u ϵ y.

Rank

For a well-founded relation ∊ on a set X, the rank function of ∊ (alternatively, the ∊-rank) is a map r() from X to
ordinal numbers such that for every x ∈ X,

r(x) = sup {r(a) + 1 | a ∊ x}.
By well-founded recursion, there is exactly one such map. Obviously, r(x) = 0 ↔ x is minimal in ∊. Moreover,

let the ∊-rank of a subset Y of X be sup {r(a) + 1 | a ∈ Y},
let the rank of ∊ be the ∊-rank of X.

 

The instance-of relation

In class-based programming languages, the instance-of relation is a fundamental mean to express similarity
between objects. The relation links objects to classes. Objects that are instances of a given class share behavior
(and structure) described by that class.

Let us write x ϵ y for "the object x is an instance of the class y". By using the ϵ symbol (lunate epsilon) for the
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instance-of relation we suggest the correspondence:

ϵ   ↭   ∈,
i.e ϵ has the semantics of set membership, ∈. The class y represents the set of all its instances. Just like sets
can share some elements, we allow classes to share instances. That is, we consider ϵ in the weak sense where
an object can belong to several classes. We might also speak about has-a-class as a synonym for instance-of.

There is a second point that should be noted in the expression x ϵ y: both the object x and the class y are
denoted by a lowercase letter. This suggests that we are focused on programming languages that support the
following uniformity principle of ϵ:

Classes are objects.

As a consequence, ϵ is a relation between objects. If x ϵ y then the class y is a meta-object of x in the sense
that y is one of objects that provide description for x. If x ϵ y and x is itself a class (and so is every other
potential instance of y) then y is a metaclass. In fact, the occurrence of the notion of a "metaclass" in
publications about a particular programming language is a good indicator that the language supports handling
of classes as objects.

Sample structure

The following diagram shows a sample structure of the instance-of relation. The structure contains 7 objects: 4
classes and 3 "ordinary" objects. The instance-of relation is displayed by dark blue arrows: x ϵ y iff there is a
blue arrow from x to y.

For an object x we denote x.϶ the set of all instances of x and call it the extension of x. Ordinary objects have
empty extension. The sample structure is "saturated" in the sense that classes are distinguishable by their
instances: different classes have different extensions. This allows to derive a partial order, denoted ≤, and called
inheritance, between the 7 objects by:

x ≤ y   iff   x = y or ∅ ≠ x.϶ ⊂ y.϶.
If x ≤ y then x is said to be an (inheritance) descendant of y which is in turn an (inheritance) ancestor of x. We
also let < denote the reflexive reduction (the strict inheritance) of ≤ in the obvious sense. The inheritance relation
is shown as a Hasse diagram in the transitive reduction of < by green arrows between classes. Ordinary objects
are not involved in <. The sample structure only has single inheritance — every object has at most one
inheritance parent.

c

A

B

u
v

o

s

 … built-in class
 … user class
 … "ordinary" object

x ≤ y   iff   x → … → y
x ϵ y   iff   x → y
y.϶ = { x | x ϵ y }
o.϶ = {s, u, v, A, B, o, c}
c.϶ = {A, B, o, c}
A.϶ = {s, u, v}
B.϶ = {u, v}

Note that every object has a class that is least in inheritance. For an object x let us denote x.class such a class
and call it the class of x. If x.class = y then we also say that x is a direct instance of y. Thus, the .class map
forms a subset of ϵ, distinguished by thick blue arrows in the diagram. The instance-of relation can be recovered
from the .class map and inheritance by their composition, i.e. (ϵ) = (.class) ○ (≤) where the composition symbol
"○" is interpreted left-to-right. The equality can be read as: x is an instance of y iff the class of x is an inheritance
descendant of y.

Observe that classes o and c are circular – they are instances of itself. Moreover, every object is an instance
of o and classes are exactly the instances of c.

•
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Structure creation

In a programming language, o and c are distinguished built-in classes, usually named Object and Class,
respectively. The remaining part of the structure is built incrementally, by adding "user" classes A and B and
their instances s, u and v, one by one. Each of the addition of these five user objects x can be formally
expressed as class instantiation:

x = q.new(p1, …, pn)
where q is the requested class of x and p1, … pn are the requested parents (direct inheritance ancestors) of x.
For ordinary objects, the assignment reduces to x = q.new() which we further abbreviate to x = q.new.
Since the sample structure only has single inheritance, new class creation can be expressed by x = c.new(p)
with the single requested parent p. As a result, the structure is built by the following five assignments:

A = c.new(o); B = c.new(A); s = A.new; u = B.new; v = B.new
This line of pseudocode (with ";" used as a delimiter between the assignments), if preceded by o = Object
and c = Class, is a valid line of code in the Ruby programming language for the creation of the sample
structure.

Adding inheritance to the signature

Let us denote O0 = {o,c}, O1 = O0 ∪ {A}, …, O5 = O4 ∪ {v} = Ō so that O0 is the set of built-in objects of the
sample structure and for each i = 1, …, 5, the set Oi corresponds to an addition of a single object into the
structure. Note that most of the intermediate structures (Oi, ϵ) do not satisfy the extensionality principle that
allowed us to distinguish classes as objects with non-empty extension and to derive inheritance via inclusion of
class extensions. To capture also the intermediate structures, the inheritance relation has to be prescribed
explicitly. Therefore, we extend the signature from (Ō, ϵ) to (Ō, ϵ, ≤). We call this instance-inheritance structure
the primary structure of ϵ.

Note that since (ϵ) = (.class) ○ (≤) we can use the signature (Ō, .class, ≤) as well.

The sample expressed in relevant languages

This section demonstrates the presence of the instance-of relation in object oriented programming and
modelling. It is shown how the sample structure can be created and introspected in various prominent
programming languages. An example of an ontological language is provided too.

Where applicable, a diagram is provided showing how the sample structure is obtained as a restriction of a
finer structure.

In Ruby

The Ruby programming language allows a uniform expression of the sample structure. Every (user) object can
be created via the new method. The instance-of relation between the 7 objects can be detected via the is_a?
method (aliased as kind_of?). In the restriction to classes, the <= method corresponds to ≤. The .class map is
provided by the class introspection method.
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A

B

u
v

s

c

o

o = Object
c = Class
A = c.new     # class A; end
B = c.new(A)  # class B < A; end
s = A.new
u = B.new; v = B.new

In Python

o = object
c = type
A = c('A', (), dict())    # class A(): pass
B = c('B', (A,), dict())  # class B(A): pass
s = A()
u = B(); v = B()

In Python, new instances are created by "calling" classes. Also the classes A and B can be created this way,
though not so transparently as in Ruby. The instance-of relation between x and y is detected by
isinstance(x,y). Inheritance between classes x, y is detected by: x < y iff issubclass(x,y). For every
object x, the expression type(x) returns the class of x.

In JavaScript

Traditionally, prototype-based programming languages are regarded to be "classless" and thus devoid of the
instance-of relation. However, as we have already mentioned before, we do not consider this characteristics to
be applicable to JavaScript. The diagram below demonstrates that JavaScript allows for the creation of our
sample structure. (So that all of o, c, A and B are examples of JavaScript classes.) Every (user) object can be
created via the new operator. The instance-of relation between the 7 objects can be detected via the
instanceof operator. The .class map is provided by the constructor property. Inheritance between classes
can be detected via the isPrototypeOf method as follows:

x < y   iff   y.prototype.isPrototypeOf(x.prototype).
Observe that in contrast to the Ruby sample, the additional objects of the finer structure are drawn on the
opposite (i.e. left) side. This is because Ruby supports implicit containers (eigenclasses), whereas JavaScript
supports implicit members (prototypes).
Note:  To simplify the code, inheritance between B and A is achieved using the non-standard property
__proto__.

•
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class A {}
class B extends A {}

class Xx {
  public static void main (String[] xx) {
    Object
    o = Object.class,
    c = Class.class,
    A = A.class,
    B = B.class,
    s = new A(),
    u = new B(), v = new B();
  }
}

c

o

A

B

u
v

s

o = Object; c = Function
A = new c
B = new c; B.prototype.__proto__ = A.prototype
s = new A
u = new B; v = new B

In Smalltalk

Smalltalk-80 (as of Pharo or Squeak) only allows creation of classes via the subclass: method. The instance-
of relation between the 7 objects corresponds to the isKindOf: introspection method. The introspection
method named class only partially corresponds to the .class map: while it agrees on ordinary objects, it
disagrees on classes.

c

A

B
u

v

o

s

o := Object. c := Class.
o subclass: #A.
A subclass: #B.
s := A new.
u := B new. v := B new.

In Java

In the Java programming language, classes can be
regarded as objects due to the reification facility. For a
class named A, the "class object" of A is referred to by
A.class. Note that in contrast to Ruby, A.class does
not refer to the class of the class named A. As a
consequence, there is a notational duality between (non-
reified) classes and their object counterparts. The
instance-of relation between objects x and y where y is
known to be a reified class named Y can be detected
either via

x instanceof Y, or
y.isInstance(x).

The (reified) class of an object x equals x.getClass().
If x is a (reified) class other than o, then
x.getSuperclass() is the (reified) inheritance parent of x. Note that the method names suggest that it is a
class what is returned, rather than a "class object".
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var o = classOf[Object]
var c = classOf[Class[_]]
class A
class B extends A
var s = new A
var u = new B; var v = new B

let o = <object>;
let c = <class>;
let A = make(c);
let B = make(c, superclasses: list(A));
let s = make(A);
let u = make(B); let v = make(B);

In Scala

Scala adopts the Java's concept of reification of classes. For a class
named A, the expression classOf[A] refers to the "class object". Note
again that classOf[A] is not the class of A. Introspection facilities for the
instance-of relation and inheritance between classes are similar to those of
Java.

In Dylan

The Dylan programming language fully supports the
"classes are objects" principle [20]. Every user object can
be created via the make method. Inheritance between
classes is detected via subtype?, the instance-of relation
between objects and classes is detected via instance?.
Finally, the object-class method is the exact
correspondent to the .class map.

In CLOS

According to authoritative publications [58] [35], the Common Lisp Object System (CLOS) fully conforms to the
"classes are objects" principle. (However, there is still some sort of notational distinction for classes.) The
instance-of and inheritance relations between objects can be detected via the built-in typep and subtypep
methods, respectively.
(defvar o (find-class 'standard-object))
(defvar c (find-class 'standard-class))
(defvar A (make-instance c :name 'A))
(defvar B (make-instance c :name 'B :direct-superclasses (list A)))
(defvar s (make-instance A))
(defvar u (make-instance B)) (defvar v (make-instance B))

Gray color in the code indicates that we consider two possible interpretations of c, shown in the diagrams
below. In the (a) case, the class map between the 7 objects is provided by the class-of method.

(a)
c corresponds to standard-class

(b)
c corresponds to class

o

c

A

B

u
v

s

o

A

B

u
v

s

c

In RDFS

In RDF Schema,[63] [64] objects are called resources. Our sample structure is obtained from the RDF graph
entailed by the following set of RDF triples expressed in Turtle syntax [67]. The "example" prefix ex: is used for
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the user-created objects.
ex:B rdfs:subClassOf ex:A .
ex:s rdf:type ex:A .
ex:u rdf:type ex:B .
ex:v rdf:type ex:B .

The sample built-in classes o and c are those named rdfs:Resource and rdfs:Class, respectively. The
rdf:type property stands for the instance-of relation, ϵ. Inheritance between classes is expressed via the
rdfs:subClassOf property.

In Objective-C

The diagram below shows how the sample structure can be interpreted in Objective-C. The o and c classes are
coincident, so that the sample structure contains one object less. The diagram also indicates that there is a
"non-degenerate" interpretation, with c set to the gray object labelled by c. In this document, we prefer the first
interpretation, since we do not consider the gray object to be a class.

A

B

u
v

o

s

c
@interface A: NSObject; @end
@interface B: A;        @end
@implementation A; @end
@implementation B; @end
int
main(int argc, const char *argv[]) {
  id
  o = [NSObject class],
  s = [A new],
  u = [B new], v = [B new];
  return 0;
}

The instance-of relation can be detected via the isKindOfClass: method. The class_getSuperclass
method can be used for the introspection of inheritance between classes. Similarly to Smalltalk-80, the class
introspection method only agrees with the .class map on ordinary objects. For a class x, the expression [x
class] evaluates to x. (This is in contrast to Smalltalk-80, where x class is always different from x.)

In Perl

In Perl 5, the instance-of relation, ϵ, deviates from the standard (represented by the sample structure) in a
substantial way. In the restriction to classes, ϵ coincides with inheritance, ≤. As a consequence, there is a total
circularity between classes:

every class is an instance of itself, and even
every class is the class of itself.

The instance-of relation can be detected by the isa introspection method. The semantics of ϵ is then adhered
to by method lookup. [15]

The diagram below shows the sample structure in the correspondent modification.
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o

A

B

u
v

s

package UNIVERSAL { sub new { bless {}, $_[0] } }
package A         { }
package B         { our @ISA = A }
my
$o = UNIVERSAL,
$s = A->new,
$u = B->new, $v = B->new;

Refinement by implicit containers

In the primary structure (Ō, ϵ, ≤) introduced above, every non-built-in object is explicitly created by class
instantiation. (As shown by the Ruby or Python code, classes themselves are created by instantiation of c.) As a
consequence, every class is the most specific descriptor for its direct instances. Equivalently, objects
instantiated by the same class have the same description. In particular, every class has the same set {c, o} of
"describing" classes in (Ō, ϵ, ≤).

Eigenclasses

The instance-of relation can be refined by adding implicit containers. In the following diagram, the sample
structure (Ō, ϵ, ≤) is extended to (Ō', ϵ, ≤) in such a way such that every object x from Ō has its own implicit
meta-object, the eigenclass of x, denoted x.ec. Therefore,

Ō' = Ō ⊎ Ō.ec,
where Ō are the primary objects, and Ō.ec are eigenclasses. The x ↦ x.ec assignment is displayed by gray left-
to-right arrows.

c

A

B

u
v

o

s

x ϵ y   iff   x → … → ⇢ → … → y

The inheritance relation is extended to Ō' as follows. For every x, y from Ō,
x.ec ≤ y.ec iff x ≤ y,   (That is, .ec is an order embedding of (Ō, ≤) into (Ō', ≤).)
x.ec ≤ y iff x ϵ y,
x ≰ y.ec.

Object membership

The ϵ relation, extended to Ō', equals (≤) ○ (.ec) ○ (≤). In contrast to inheritance, we do not preserve the
"instance-of" term for ϵ. Instead, we call the ϵ relation object membership. If x ϵ y then x is said to be a member
of y. We can also say that y is a container of x.
Proposition:  For every x, y from Ō,
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x ϵ y iff x.ec ≤ y.
That is, x.ec is the least container of x. In particular, x ϵ x.ec and x.ec < x.class.

The refined "class" map

Just like every object x in the primary structure has x.class as the unique least class that has x as its instance,
in the refined structure (Ō', ϵ, ≤), every object has a unique least container. For an object x we denote x.aclass
such a container, and call it the actualclass of x. In the diagram below, the .aclass map is shown by blue links.

c

A

B

u
v

o

s
x ϵ y   iff   x → → … → y

Observations:
1. The .aclass map coincides with .ec on primary objects and equals the the composition .ec .class.ec on

eigenclasses.
2. (ϵ) = (.aclass) ○ (≤).

Support in programming languages

Of the languages mentioned above, only Ruby supports refinement presented in the previous subsection. There
are some languages that provide partial support.

In Smalltalk-80 and Objective-C, each class has its own implicit metaclass.
In Scala, the object construct can be used to create ordinary objects that have its own meta-object.
In Dylan, all the 7 eigenclasses have a correspondent but the .aclass map is different (see the sample
structure).

In Objective-C

The refinement of the sample primary structure for Objective-C is shown on the following diagram. Blue links
correspond to isa pointers, green links to super_class pointers. [13]
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u
v

o

s

e

f

g

id
e = object_getClass(o),
f = object_getClass(A),
g = object_getClass(B);

The implicit metaclasses e, f and g are created together with classes o (the built-in NSObject class), A and B,
respectively.
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In Scala

The structure on the following diagram can be created using the object construct for s and v instead of the
new operator used in the primary sample.

c

A

B

o

u

v

s e

g

object s with A
val    u = new B
object v with B
val    e = s.getClass
val    g = v.getClass

Eigenclass completion

The structure (Ō', ϵ, ≤) still provides only partial refinement since the pattern has only been applied to primary
objects. A complete refinement arises when eigenclasses themselves have eigenclasses. We can extend Ō' to
Ō'' by eigenclasses of Ō', then extend ≤ and ϵ accordingly, then extend Ō'' to Ō''' by eigenclasses of Ō'', and
so on. This leads to infinite eigenclass chains. The resulting structure (O, ϵ, ≤) has infinitely many objects and
can be characterized as an embedding of inifinite regress into inheritance.

Full uniformity of the structure provides the following simplifications:
Object membership, ϵ, equals the composition (.ec) ○ (≤), i.e. an object x is a member of an object y iff x.ec
is an inheritance descendant of y.   (However, the equality (ϵ) = (≤) ○ (.ec) ○ (≤) is still valid.)
Inheritance is obtained from ϵ as inclusion of sets of containers. Therefore, the structure can be expressed
in the simple signature (O, ϵ).

The core structure of Ruby

In this section we describe the completely refined structure (O, ϵ, ≤) anew, using Ruby as the definitive sample
language. The recapitulation allows us to establish consistent notation and terminology.

Sample structure

The following diagram shows a sample for the description of the core structure of Ruby. Note that the structure
is just the eigenclass completion of the sample primary structure except that

the s object is removed to simplify the diagram, and
all four circular classes of Ruby 1.9 are contained in the structure, not just Object and Class.

•
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(Ruby 1.9)

r = BasicObject
c = Class
class A; end
class B < A; end
u = B.new
v = B.new

There are infinitely many metalevels, indexed 0, 1, 2, …. The structure is built using two sorts of links. Green
links correspond to the superclass introspection method. A green line going from an object x upwards to an
object y indicates that y is an (the) inheritance parent of x. For curved lines (those starting at the top of
metalevel 2 and higher) the upward direction is expressed explicitly by an arrow. All the other superclass links
are drawn as a Hasse diagram. Gray arrows (directed left-to-right) show the infinite regress of meta-objects.
Each object x has its own meta-object, called the eigenclass of x, which is one metalevel higher than x.

The prefix eigen stands for own – different objects have different eigenclass. In the Ruby comunity, the term
"eigenclass" appeared around the year 2005. Previously, the term "singleton class" has been used. As a
(historical) consequence, the corresponding introspection method is named singleton_class.

We use the notation x.ec for the eigenclass of x, so that x.ec corresponds to x.singleton_class. The .ec
map is then the eigenclass map shown by gray arrows. Furthermore, let x.ec(i) be the i-th application of .ec to
x. Components of the .ec map are eigenclass chains of the form x, x.ec, x.ec(2), x.ec(3), …. The inverse of .ec
is denoted .ce. For x from O.ec, x.ce is the eigenclass predecessor of x. Let .ec  be the reflexive transitive
closure of .ec. For an object y, let y.pr be the primary object of y, that is, the first object of the eigenclass chain
y.pr.ec  to which y belongs.

Inheritance and membership

The reflexive transitive closure of green links is the inheritance relation between objects, denoted ≤. Since the
superclass links are acyclic, ≤ is a partial order. We also let < denote the strict inheritance with the obvious
meaning. It can be observed that the eigenclass map is an order-embedding with respect to inheritance. For
every objects x, y,

x ≤ y   iff   x.ec ≤ y.ec.
Object membership, ϵ, equals the composition (.ec) ○ (≤), i.e. an object x is a member of an object y iff x.ec is
an inheritance descendant of y. For a positive natural n, let ϵ  denote the n-th composition of ϵ with itself, that
is, ϵ  equals ϵ and for objects x, y

x ϵ  y   ↔   x = x0 ϵ x1 ϵ ⋯ ϵ xn-1 ϵ xn = y for some objects x1, …, xn-1.
For now, we consider ϵ  to be equal to the identity relation between objects. Later in this document, we redefine
ϵ  to ≤ according to the definitions for basic structures. The reflexive transitive closure of ϵ is denoted ϵ . We
also introduce a notation for images and preimages under ≤ and ϵ.

x.↥ (resp. x.↧) denotes the set of (non-strict) ancestors (resp. descendants) of an object x.
Similarly, for a set X of objects, X.↥ (resp. X.↧) is the upset (resp. downset) of X.
x.ϵ (resp. x.϶) is the set of all containers (resp. members) of an object x.
x.ϵ  is the set x.ϵ  ∪ x.ϵ  ∪ x.ϵ  ∪ ….

Observe that for every objects x, y,
(1) x.↧ = x.ec.϶   (descendants of x are exactly the members of x.ec),
(2) x.ϵ = x.ec.↥   (containers of x are exactly the ancestors of x.ec),
(3) x ≤ y iff x.ϵ ⊇ y.ϵ   (x is a descendant of y iff every container of y is also a container of x),
(4) x.ec = y iff x.ϵ = y.↥   (the eigenclass of x is the least container of x).
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Conditions (1) and (2) are the (≥) = (.ec) ○ (϶) and (ϵ) = (.ec) ○ (≤) equalities, respectively. As a consequence
of (3) and (4), the whole structure (O, .ec, ≤) is given just by object membership, (O, ϵ). Note that the first
equivalence implies that ϵ is co-extensional – objects are distinguished by their containers. In contrast, ϵ is
typically not extensional.

Direct inheritance

Green links in the diagram correspond to direct (strict) inheritance – the reflexive transitive reduction of ≤. We
might sometimes use the ≺ symbol for this relation. If x ≺ y then x is an (inheritance) child of y and y is an
(inheritance) parent of x. We will mostly refer to direct inheritance through its image map, .parents. For an
object x, x.parents (as an abbreviation of {x}.parents) denotes the set of inheritance parents of x.

The notation is adapted to multiple inheritance. If single inheritance is asserted, we can use the .sc notation
for ≺ so that x.sc = y iff x ≺ y. For an object x, the object x.sc, if defined, is the superclass of x. The core
structure of Ruby can be then expressed as (O, .ec, .sc). [42]

Membership as is-a

The object membership relation, ϵ, between the objects of the sample structure can be detected in Ruby by the
is_a? introspection method. The method is aliased as kind_of?. (There is also the Class#=== introspection
method, which detects the inverse relation, ϶.)

If x is a member of an object named B then one can say that x is-a B. The set B.϶ of all members of B can be
referred to as Bs. This convention can be used for nomenclature of objects. Moreover, there can be a distinction
between the names that are built using this convention (these names are capitalized and styled) and those
names that are not. In Ruby, the built-in classes Object, Module and Class provide such a distinction.

Objects are objects that are not "blank slate" objects.
Modules are modules together with Classes.
Classes are classes together with eigenclasses.

Note in particular that we regard is-a as another name for object membership, ϵ, not for inheritance, ≤.
Unfortunately, in object modeling, and in most publications about object oriented programming, "is-a"
corresponds to inheritance. The reasoning goes as follows. If A and B are classes such that A ≤ B (A is a
subclass of B) then one can say that

an A is a B,
meaning that an instance of A is also an instance of B. The sentence structure can be expressed as "an-A is a-
B" (two pairs of article-noun and a verb between). However, the longest characteristic subsequence is "is a"
which leads to another hyphenation and to saying that

there is an is-a relationship between A and B.
This is in turn abbreviated to "A is-a B" (so that the A's article is dropped and the B's article is secluded from B),
meaning that the (A,B) pair belongs to the is-a relation. This abbreviated statement then becomes ambiguous
since one way to interpret it is

the A is a B
which is fundamentally different from the original statement.
Note:  The two different meanings of "is-a" have been analyzed by R. Brachman [7] [39].

The ϵ meaning is called individual/generic and is exemplified by "Socrates is a man".
The ≤ meaning is called generic/generic and is exemplified by "a cat is a mammal".

The ambiguity of "is-a" can be resolved according to the adherence to the uniformity principle stated in the
introduction. If classes are not considered to be objects (individuals) then "is-a" is resolved in favor of ≤.
Otherwise, if classes are among objects (as is our assumption) it is reasonable to interpret "is-a" as ϵ. At
present, this second interpretation is supported only rarely. The Ruby introspection method is_a? and the
Objective-C isa pointers are two notable examples. Others can be found in publications about Smalltalk [36] or
Self [59]. Another example is the book by Forman and Danforth [21] which uses isA for ϵ. A more detailed
discussion can be found in [51].

Basic nomenclature of objects

‣ ‣
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We introduce the basic nomenclature of objects according to the following diagram.

1 43
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H
T C

R
O … objects   = T ⊎ C ⊎ O.ec
O.ec … eigenclasses
O.pr … primary objects   = O.c = T ⊎ C
T … terminals   = O ∖ r.↧
C … classes   = O.pr ∖ T
H … helix objects   = r.ϵ  = r.↧.he = R.↥
R … reduced helix   = r.ec  = r.↧.re
r … inheritance root
c … metaclass root / instance root
r.↧ … Classes   = c.϶ = O.ϵ.↧
c.↧ … metaclasses   = C.class.↧
r.ec(i).϶ ∖ r.ec(i).↧ … i-th metalevel

We denote O the (infinite) set of all objects.
O.ec (the image of the eigenclass map, shown right to the black line) is the set of eigenclasses.
O ∖ O.ec (objects that are NOT eigenclasses, to the left of the black line) is the set of primary objects.
T denotes the set of terminal objects or just terminals – objects without members and without strict
ancestors.
C is the set of classes, the primary non-terminal objects.
r is the inheritance root. It is the highest non-terminal object, w.r.t. inheritance.
c is the instance root and is also called the metaclass root and named Class. It is the unique inheritance
parent of r.ec.
R is the set of objects from the eigenclass chain of r, the reduced helix.
H is the set of helix objects – objects x such that x ϵ x. Note that H = R.↥.

Previously, we used the term "ordinary objects" for elements of T. The new terminology is similar to that
introduced in the ObjVlisp model [9] [10] [14] where the term "terminal instances" is used. Note that for an
object x the following are equivalent:

x is non-terminal.
x is a Class (i.e. x is a member of the c object which is named Class).
x is an inheritance descendant of r (i.e. x ≤ r).

In particular, non-terminal objects can be referred to as Classes.
The terminology for the set H = r.ϵ  is based on the similarity of the diagrammatization of (H, ≤) with a right-

infinite helical curve.

Classification systems

By a classification system we mean a closure system Y on Classes. I.e. it is a set of distinguished non-terminal
objects such that every non-terminal x has a least ancestor from Y. Equivalently, Y is such that every object x
has a least container from Y. If .y is the corresponding closure operator (that maps a non-terminal object to its
least ancestor from Y), then the corresponding classification map (that maps any object to its least container
from Y), equals .ec.y. Observe that since both .ec and .y are monotone, any classification map is monotone, i.e.
for every objects a, b,

if a ≤ b then a.ec.y ≤ b.ec.y.
Note that the sets C, R and H are all classification systems. (In fact, since in Ruby the inheritance on

Classes forms a tree, any subset of O ∖ T containing r is a classification system.) We denote the
corresponding closure operators by .c, .re and .he, respectively.

In the case of .c, we extend the definition to all objects: we let .c to be the closure operator corresponding to
the closure system C ⊎ T in (O, ≤). This allows us to conveniently express the set of all primary objects as O.c.

Metalevels

∗
∗

∗
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The set R is the classification system for metalevels. An object x belongs to the i-th metalevel (and therefore
has the metalevel index x.mli equal to i) iff x.ec.re = r.ec(i).
Further observations:

The set T of terminal objects is the metalevel 0.
For i > 0, the i-th metalevel has a top, equal to r.ec(i-1).
The i-th metalevel, i ≥ 0, equals the set r.ec(i).϶ ∖ r.ec(i).↧.
For an object x, the metalevel index x.mli equals the cardinality of x.↥ ∩ R.
The last metalevel containing a primary object is isomorphic to any higher metalevel (via .ec(i) for a suitable
i).

Classes and the .class map

The set of all Classes forms a trivial classification system, with .ec the corresponding classification map.
However, the eigenclass map is not useful for classifying objects since different objects have different
eigenclass, so that each object is classified as different from every other object.

The most important classification system is the set C of primary non-terminal
objects. Objects from C are called classes. The corresponding classification map is
denoted .class. (So that .class = .ec.c.) For an object x, the object x.class is said
to be the class of x. Note that the just introduced meaning of "class" and "class-of"
possesses the following fundamental consistency:

The class of x is the least container of x that is a class.

Further observations:
Classes are primary Classes.
Classes are classes together with eigenclasses.
x.class ≠ x.ec for every object x.
The .class map is derived from the eigenclass map and the inheritance relation.
The distinguished objects r and c are classes.
The .class map forms a tree rooted at c. In particular, c is the only object that is the class of itself.
Unlike eigenclasses, classes cannot be in general expressed as O.class (the image of the class map).

The diagram on the right shows the class map for the sample structure, in the restriction to primary objects. To
illustrate the .ec.c composition, the arrows are drawn along eigenclass paths.

In Ruby, all classes reside in the metalevel 1. As a consequence, .class.class maps constantly to c. The
Ruby introspection method named class is in 100% correspondence with the .class map.

The instance-of relation

Just like the .class map is a coarsement of the eigenclass map, the composition (ϵ) ○ (.c) is a coarsement of
object membership. This relation is called instance-of and can be equivalently defined as the range-restriction of
ϵ to classes, i.e. for objects x, y,

x is an instance of y   iff   x ϵ y and y is a class.
The .class map, taken as a relation, is called direct-instance-of. Note that the term "instance" as such does not
distinguish any objects. Every object is an instance of some class. In particular, every object is an instance of
the inheritance root r and every object is a direct instance of its class.

By allowing indirect instances our terminology follows the semantics of the isinstance() method of Python
or the instanceof operator from Java. In Ruby, the introspection method instance_of? corresponds to
direct-instance-of. (However, the Ruby Specification [25] allows indirect instances.) Note that

if y is the eigenclass of x then x.instance_of?(y) always evaluates to false.
An object is never an instance of its eigenclass.

Metaclasses

In order to establish a correspondence with other programming languages, we introduce the term "metaclass":

•

•
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Metaclasses are exactly the inheritance descendants of c (including c itself), so that the set of all
metaclasses can be expressed as c.↧.

This in particular ensures that classes of classes (C.class) are metaclasses, as well as the classes of
eigenclasses (O.ec.class).
Observations:

The c class is the only metaclass from metalevel 1.
The set of all metaclasses other than c can be expressed as r.ec.↧ – it consists of all objects from metalevel
2 or higher.
Suppose that our sample structure has been extended by w = Module.new so that the Module class
(which is the parent of c) has a terminal member w. Then

metaclasses are exactly the Classes that do not have terminal members.
Metaclasses are said to be explicit or implicit according to whether they are classes or eigenclasses,
respectively. Note that by naming the eigenclass c.ec by Metaclass we could express the set c.↧ (= c.ec.϶) as
Metaclasses. This suggests to define metaclasses as the primary Metaclasses just like classes are primary
Classes. However, this would require an additional term for non-primary Metaclasses. Moreover, the "explicit"
/ "implicit" adjectives seem to be an established convention. [21] [16] [55]

Eigenclass actuality

Since eigenclass chains are infinite they must be lazily evaluated. There can be only finitely many objects that
are actually represented (allocated). We call such objects actual. A natural direction for evaluation of eigenclass
chains is that of the eigenclass map: if x.ec is actual then x must be actual. Let all primary objects be actual, so
that the set of actual objects forms a closure system in (O, ≤).

We denote .a the corresponding closure operator and let .aclass = .ec.a be the classification map. For an
object x, x.aclass is the actualclass of x – the least ancestor of x.ec that is actual. The set O.a of all actual
objects is the actuality extent. We can view the (O, ϵ, .a) structure as an implementation-oriented refinement of
(O, ϵ). In particular, x.aclass can be regarded as the actual startpoint of method lookup for x – non-actual
eigenclasses between x.ec and x.aclass are skipped.

The diagram below shows the actuality extent of allocated objects for the sample structure. The extent arises
after opening the eigenclasses of A and v. The actualclass map (in the restriction to actual objects) is shown by
blue arrows. Note that the map forms a tree rooted at c.ec(2).
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(Ruby 1.9)

r = BasicObject
c = Class
class A; end
class B < A; end
u = B.new
v = B.new

class << A; end
class << v; end

Note that the eigenclasses A.ec(2) and B.ec have been allocated but not opened. This is an implementation
feature of Ruby. Every newly created class x has its eigenclass allocated. When the eigenclass x.ec(i) is
evaluated (e.g. by class << x; end for i = 1) then MRI/YARV makes sure that x.ec(i+1) is allocated. As a
consequence, we can distinguish 2 actuality extents: one for actually referenced (evaluated) objects and a
larger one for allocated objects.

As already mentioned, the diagram shows the structure for the larger extent. Objects that have been allocated
but not referenced are shown in light blue. The actualclass map shown by blue links could be denoted .klass,
since it is maintained by the implementation via the klass field in the C source. Note that there cannot be an
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introspection method for .klass due to the probe effect. There could only be an introspection method for the
actualclass map for the smaller extent, but even this is not supported since it is considered to be an
implementation property.

The reason for having an extra object allocated in each eigenclass chain of classes is an efficient update of
the actualclass map for inheritance descendants. This does not affect terminal objects (or their eigenclasses).
Since they cannot have descendants, they do not need to have their eigenclass allocated.

The core structure of Smalltalk-80

The Smalltalk-80 programming language is the first language which introduced the refinement of the instance-of
relation by implicit objects. Simultaneously, Smalltalk is one of the first proponents of the "classes are objects"
pattern.

Unfortunately, the Smalltalk-80 core structure possesses uniformity deficiencies which were compensated by
equivocal terminology in the Smalltalk's literature. [48]

To describe the Smalltalk-80 counterpart of the Ruby core structure we use a specially restrained terminology
in which the following terms are (at first) avoided:

Class — we do not say which objects are classes and which not.
Metaclass — we do not say which objects are metaclasses and which not.
Class-of. We do not say what is the class of an object. In particular, even if the expression x class
evaluates to y we do not say that y is the class of x.
Instance-of. We do not say what it means for objects x and y that x is an instance of y.

Sample structure

The following diagram shows a sample core structure of Smalltalk-80. The structure consists of 18 objects with
oriented links between them. There are two sorts of links. The green links correspond to the superclass
introspection method. There is a single line for which the upward direction is expressed explicitly by an arrow.
All the other superclass links are drawn as a Hasse diagram.

The blue links correspond to the class introspection method. A blue line starting at x and ending in y (with
an arrow head pointing to y) indicates that the expression x class evaluates to y.
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(Pharo 1.3 / Squeak 4.2)

 r := ProtoObject.
 c := Class.
mc := Metaclass.
Object subclass: #A.
A      subclass: #B.
u := B new.
v := B new.

The horizontal dashed line indicates the division of the structure into the built-in part (above the line) and the
user-created part. In the code right to the diagram, first distinguished built-in objects are denoted (by r, c and
mc) and subsequently the user-part of the structure is created.

The built-in part forms a substructure — it contains exactly the objects reachable from the mc object via a
combination of blue and green links. (Note that the substructure is generated by any single object it contains,
not just mc.) Moreover, it is a minimum (nonempty) substructure, since the mc object is reachable from any
object (via at most 3 blue links).

Metalevels

•

•

27



⊤

⊤

⊤

⊤

⊤

Metalevels

The sample diagram shows 3 types of blue links. The curved blue links point to the mc object. The straight left-
to-right links precede the curved links. Each curved link is preceded by exactly one straight link. The remaining,
broken-line links precede the straight links, but without a one-to-one correspondence.

The division of blue links induces a division of objects into 3 metalevels.
The metalevel 2 consists of all objects x such that x class == mc.
The metalevel 1 consists of all objects x such that x class class == mc.
The metalevel 0 consists of all remaining objects. For every x from the metalevel 0,

x class class class == mc.
However, this equality cannot be used to distinguish the metalevel 0 since it also holds for every object from
the metalevel 2.

The sample structure contains 8 objects from metalevel 2 (shown in gray), 8 objects from metalevel 1, and 2
objects from metalevel 0 (denoted u and v).

Uniformity deficiency No. 1

Observe that the blue links provide the following mappings between metalevels:
Objects of metalevel 0 are mapped to objects of metalevel 1, possibly many-to-one.
Objects of metalevel 1 are mapped to objects of metalevel 2 in a one-to-one correspondence.
Objects of metalevel 2 are constantly mapped to the distinguished object mc from metalevel 1.

This reveals a defect of uniformity of the Smalltalk-80 object model:
Objects from the metalevel 1 have each an individual (meta)object from the next metalevel pointed to by a
blue link. Objects from other metalevels do not have such an own meta-object.

Inheritance

We denote ≤ the reflexive transitive closure of green links, i.e. for objects x, y
x ≤ y   iff   y is reachable from x via zero or more green links.

This relation forms a partial order, called inheritance.
Further observations:
1. Objects from metalevel 0 are exactly the singletons in inheritance: they have no (strict) descendants or

ancestors.
2. The object r is the top of the metalevel 1 as well as of the union of metalevels 1 and 2, w.r.t. inheritance.
3. The object r class is the top of the metalevel 2, w.r.t. inheritance.
4. The parent of r class is the object c from metalevel 1.
5. In the restriction to a metalevel, the blue links constitute a map that is monotone w.r.t. inheritance, i.e. if x

and y are from the same metalevel, then
x ≤ y   implies   (x class) ≤ (y class).

6. Since blue links constitute bijection between metalevels 1 and 2, they constitute an order isomorphism
between these metalevels, w.r.t. inheritance. If x is an object from metalevel 1 different from r, then

x class superclass == x superclass class.

Uniformity deficiency No. 2

The following observation reveals another defect of uniformity of Smalltalk-80:
Without the restriction to a particular metalevel, the blue links do NOT constitue a monotone map.

For example, if x := r class and y := c, then x ≤ y (we even have x superclass == y) but x class
equals mc which is not an inheritance descendant of y class.

The Ruby-Smalltalk core correspondence
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The correspondence between the core structures of Smalltalk-80 and Ruby can be observed on the following
pair of diagrams. The Ruby structure has the actuality extent O.a = T ⊎ C ⊎ C.ec, so that

T is the set of actual objects on metalevel 0,
C is the set of actual objects on metalevel 1,
C.ec is the set of actual objects on metalevel 2,

and there are no more metalevels with actual objects.
Smalltalk-80 Ruby
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We now resolve the terms "class", "class-of", "metaclass" and "instance-of" by applying Ruby-based
terminology and notation to Smalltalk. Let

terminals (T) be the objects from metalevel 0,
classes (C) be exactly the objects on metalevel 1, and
implicit metaclasses (C.ec) be the objects from metalevel 2,

In particular, the metalevel 1–2 correspondence is a correspondence between classes and implicit metaclasses.
The differences between the core samples can be listed as follows:

1. The Smalltalk-80 core contains two more built-in classes, of which only the mc class (named Metaclass)
constitutes a structural change as a "receiver" of blue arrows.

2. The blue arrows starting at metalevel 2 are "redirected" to mc.
Since blue arrows in the Ruby sample display the actualclass map, .aclass, the blue arrows in the Smalltalk
sample indicate the imposed actualclass map, which we denote .aȼlass. Therefore,

x.aȼlass = x.aclass if x is a class or terminal,
x.aȼlass = mc otherwise (i.e. if x is an implicit metaclass).

The imposed class map, .ȼlass, equals the composition .aȼlass.c, i.e. x.ȼlass is the least ancestor of x.aȼlass
that is a class. The imposed (object) membership equals the composition (.aȼlass) ○ (≤). This relation can be
detected via the isKindOf: introspection method. The imposed instance-of relation is the range restriction of
imposed membership to classes, so that it equals the composition (.ȼlass) ○ (≤). By using imposed membership
for the is-a naming convention, classes can be expressed as Classes and implicit metaclasses as
Metaclasses. Moreover, C.ȼlass.↧ can be considered to be the set of all metaclasses. The classes Class and
Metaclass are then the only explicit metaclasses.
Notes:
1. Note in particular, that the class introspection method in Smalltalk-80 does not correspond to the

synonymous method of Ruby.
In Ruby, the class introspection method corresponds to the class map, .class.
In Smalltalk-80, the class method corresponds to the imposed actualclass map, .aȼlass. As a
consequence, x class is not necessarily a class.

The following table describes the differences:

‣

‣
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For x from Smalltalk-80 x class evaluates to Ruby x.class evaluates to
T (terminals) the class of x
C (classes) the eigenclass of x the class of x which is constantly

ClassC.ec (implicit
metaclasses)

the imposed class of x which is constantly
Metaclass

2. There is no support for the above or similar definitions in the Smalltalk literature. Instead, publications about
Smalltalk-80 use equivocal terminology which suggests two different delimitations of classes and
metaclasses: [48]

(A) Classes are the objects from metalevels 1 and 2. 
Metaclasses are the objects from metalevel 2 plus the class named Metaclass.

(B) Classes are the objects from metalevel 1. 
Metaclasses are the objects from metalevel 2.

The primary structure of ϵ according to Python

We now set out for a formal description of object membership. This section provides axiomatizations of the
canonical primary structure. The axioms are general enough to allow two features that have not yet been
captured by the provided samples:

multiple inheritance (that is, an object can have multiple inheritance parents), and
explicit metaclasses other than the "built-in" c class.

It turns out that under some minor assumptions the canonical primary structures of ϵ are exactly the structures
that are allowed in the Python programming language [31] (of course, up to the number of helix classes). The
correspondence can be expressed as

(.class, .↥)   ↔   (.__class__, .__mro__)
where __class__ and __mro__ are (built-in) attributes of Python objects. The __mro__ attribute is only
applicable to classes. It stands for method resolution order and stores the list of inheritance ancestors in the
order in which they are looked up during method resolution. The inheritance relation, ≤, between classes is
obtained by

x ≤ y iff y ∈ x.__mro__
so that the order of classes in the __mro__ list is disregarded. We assume that a potential explicit manipulation
of the attribute is a permutation (changing just the order of classes in the list).
Note:  In addition to the __mro__ attribute, Python classes also contain another inheritance related attribute: the
__bases__ list. Apart from the order within the list, the intended semantics of .__bases__ is that of the
.parents map. However, the correspondence is not asserted. In particular, the __mro__ and __bases__
attributes are not kept in sync if they are explicitly manipulated. We therefore think of .parents to be derived
from .__mro__ (satisfying the assumption above) rather than from .__bases__.

Recursive definition

We first provide a recursive definition which shows how the structure can be incrementally constructed. A
canonical primary structure (of ϵ) is a structure SS = (Ō, .class, .parents, r) where

Ō is set of objects,
.class is the class map between objects,
.parents is the inheritance parent set map from Ō to the powerset of Ō,
r is the inheritance root, a distinguished object.

We denote ≺ the relation on Ō defined by x ≺ y iff y ∈ x.parents. For a set X of objects, we write X.parents for
the image of X under ≺. Therefore, for an object x,   x.parents is just an abbreviation for {x}.parents. We can
also write .parents(i) for the i-th application of .parents. Furthermore, let ≤ be the reflective transitive closure of
≺. The usual terminology and notation is used for ≤. Descendants of r form the set C of classes, the remaining
objects are terminal(s). Let c = r.class be the metaclass root. Descendants of c are metaclasses.

•

•
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The structure is then subject to the following conditions:

(py~1) ≺ is irreflexive and transitively reduced.
(py~2) All objects from Ō.parents ∪ Ō.class are classes.
(py~3) The .class map is monotone w.r.t. ≤, i.e. x ≤ y implies x.class ≤ y.class   for every objects x, y.
(py~4) If Ō = Ō.parents ∪ Ō.class   then (a) ≤ is a linear order, (b) .class is constant, and (c) r ≠ c.
(py~5) Classes of terminal objects are not metaclasses.
(py~6) The restriction of SS to Ō ∖ {x} is a canonical primary structure for every x ∈ Ō ∖ (Ō.parents ∪ Ō.class).
(py~7) The set C of classes is finite.
Observations:

Ō.parents ∪ Ō.class is the set of objects that are not minimal w.r.t. (≺) ∪ (.class).
The restriction of the structure to c.↥ is described by (py~4). It is a "built-in" substructure containing no
objects that are minimal w.r.t. (≺) ∪ (.class).
Condition (py~1) could be stated just for the built-in structure. It asserts that ≺ is a reflexive transitive
reduction of ≤ so that there is a one-to-one correspondence between .parents and ≤.
(py~6) is the only recursive condition. It says that removing an object minimal w.r.t. (≺) ∪ (.class) preserves
the structure.
We avoided recursive definitions of classes and metaclasses by introducing ≤.

New object attachment

The recursive definition says that any finite canonical primary structure can be incrementally built from its
restriction to c.↥ by attaching new objects, one by one. Let an attachment request be a pair (P,q) such that

P is the requested (possibly empty) set of inheritance parents, and
q is the requested class,

so that P = x.parents and q = x.class for the new object x. An attachment request (P,q) is acceptable iff the
following are satisfied:

(1) P is an antichain in ≤,   i.e. if x and y are different objects from P, then x ≰ y.
(2) Assert (py~2): Every object from P ∪ {q} is a class.
(3) Assert (py~3): For every x from P,   q ≤ x.class.
(4) Assert (py~5): If P is empty then q is not a metaclass.

Conditions (py~1)–(py~7) are preserved after the attachment of x if and only if (1)–(4) are asserted. Condition (1)
can be left out if x.parents is set to mins≤(P) instead of to P. The following diagrams shows assertions of (2)–
(4) in Python.

(a)
¬(py~2): s is not a class

(b)
¬(py~3): B.class ≰ A.class

(c)
¬(py~5): M is a metaclass

c

A

B

r

s

c

A

B

r

M

N

c

M

s

r

class A():
  def __new__(a): pass
s = A()

# TypeError:
class B(s): pass

class M(type): pass
class N(type): pass
class A(metaclass=M): pass

#  metaclass conflict
class B(A,metaclass=N): pass

class M(type): pass
class X: pass
s = X()

# TypeError:
s.__class__ = M

•
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Canonical primary structure

We now provide a "default" axiomatization of canonical primary structures. In the description, a preparation is
already made for the extension by implicit objects. The set of objects in a primary structure is denoted O.pr.
This expression can be later resolved to an application of .pr to the extended set O of objects. Similarly, some
sentences contain the adjective "primary" to be also applicable in the context of the extended structure.

By a canonical primary structure of ϵ we mean a structure (O.pr, ϵ, ≤, r) where
O.pr is set of primary objects,
ϵ is the instance-of relation between primary objects,
≤ is the inheritance relation between primary objects,
r is the inheritance root, a distinguished object.

The usual terminology and notation is used for ≤ and ϵ. Objects that are not descendants of r form the set T of
terminal(s), the remaining primary objects form the set C of classes. Helix objects x are such that r ϵ  x for some
i ≥ 0. Metaclasses are the lower bounds of helix classes, i.e. they are objects x such that all helix classes are
among ancestors of x. An object x is well-founded w.r.t. ϵ if there is no infinite sequence of objects x1, x2, … of
objects such that x ϶ x1 ϶ x2 ϶ …. The structure is then subject to the following axioms:

(p~1) Inheritance, ≤, is a partial order.
(p~2) (ϵ) ○ (≤) = (ϵ) = (≤) ○ (ϵ).   (That is, (a) (ϵ) ○ (≤) ⊆ (ϵ) and (b) (≤) ○ (ϵ) ⊆ (ϵ).)
(p~3) Terminals have no instances and no strict descendants.
(p~4) Helix classes are (a) totally ordered by ≤, (b) instances of each other, and (c) at least two in number.
(p~5) Metaclasses can only have classes as instances.
(p~6) Every non-helix object is well-founded w.r.t. ϵ.
(p~7) Every object x has a least primary container, x.class.
(p~8) The set C of classes is finite.
Notes and observations:
1. In RDF Schema, condition (p~2)(a) is asserted by the rdfs9 entailment rule. Using type theoretic

terminology, this can be called the subsumption rule. [28]
2. Conditions (p~2)(b) and (p~6) can be conveniently expressed using the .class map.

The .class map is monotone.   (Therefore, (p~2)(b) is the metaclass compatibility condition.)
The .class map forms a tree.

3. Condition (p~2) can be equivalently written as a single equality: (≤) ○ (ϵ) ○ (≤) = (ϵ).
4. Condition (p~3) means that terminals are minimal both in ϵ and ≤.
Proposition:  Axiomatizations (py~1)–(py~7) and (p~1)–(p~8) are equivalent.

The canonical eigenclass structure of ϵ

Roughly speaking, the canonical refinement of the instance-of relation is established by combining Ruby with
Python. This can be viewed in two ways:

(A) Equipping Python's core structure with eigenclasses.
(B) Relaxing Ruby's core structure by allowing multiple inheritance and classes on higher metalevels.

We provide precise interpretation of (A) and (B). The interpretation of (A) will be "tight" in the sense that every
class has at most one eigenclass ancestor (necessarily r.ec). This seems to be the simplest way of eigenclass
completion. However, since it also disallows classes on metalevels higher than 2, the interpretation of (B)
defines a "slightly" larger family than that of (A). Moreover, some axioms for (B) are singled out for further
generalization of object membership.

Eigenclass regress alone

The structure of infinite regress of eigenclasses can be simply characterized as a monounary algebra (O, .ec)
such that
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.ec is an injective well-founded map.
Elements of O are objects, .ec is the eigenclass map between objects. For an object x,   x.ec is the eigenclass
of x. We denote x.ec(i) the i-th application of .ec to x. (Let x.ec(0) = x.) Since the .ec map is injective, it has a
partial inverse which we denote .ce. For an eigenclass x,   x.ce is the (direct) eigenclass predecessor of x.
Objects from O.ec are eigenclasses, the remaining (i.e. those without an eigenclass predecessor) are primary.
Components of (O, .ec) are eigenclass chains.

x.pr x.ce x.ecx

Since .ec is well-founded, every eigenclass chain starts in a primary object. For an object x, let x.pr denote the
primary object of x, (i.e. the primary object of the eigenclass chain to which x belongs). The unique natural i
such that x.pr.ec(i) = x is denoted x.eci and called the eigenclass index of i.
Observations:
1. For each eigenclass chain X,   (X, .ec) is isomorphic (via .eci) to the structure (ℕ, succ) of natural numbers

where succ is the successor operator.
2. O = O.pr ⊎ O.ec.
Notes:

As of version 2.0 or older, Ruby does not provide any introspection methods for .ce, .pr or .eci. Internally,
the .ce links are implemented using the __attached__ instance variable.
ABCL/R is another example of a programming language that supports infinite regress. In the documents [33]
[34], the term metaobject (or meta-object) is used for "eigenclass". An eigenclass chain is a metaobject
tower. As the term suggests, the regression is diagrammatized vertically. The code expressions [meta x]
and [den x] correspond to x.ec and x.ce, respectively.

Tight canonical structure by eigenclass completion

By a tight canonical eigenclass structure of ϵ we mean a structure (O, .ec, ≤, r) where O is a set of objects, .ec
is the eigenclass map O → O, ≤ is the inheritance relation between objects, and r is a distinguished object. The
structure is subject to conditions (ec~1)–(ec~3) below. Let the object membership relation, ϵ, be the composition
(.ec) ○ (≤). Additional terminology and notation is induced by the first two conditions. In particular, .pr is the
primary object map (obtained from .ec) and c is the metaclass root.

(ec~1) .ec is an injective well-founded map.
(ec~2) (O.pr, ϵ, ≤, r) is a primary structure of ϵ.
(ec~3) For every primary objects a, b and every natural i, j > 0, the following are satisfied:

(A) a.ec(i) ≤ b   iff   a ϵ▫  b   where ϵ▫ denotes the restriction of ϵ to primary objects.
(B) a ≤ b.ec(j)   iff   a < c, b = r and j = 1.
(C) a.ec(i) ≤ b.ec(j)   iff   a.ec(i-1) ≤ b.ec(j-1).

The definition is in fact a prescription for the eigenclass completion of a primary structure. Given a canonical
primary structure (O.pr, ϵ, ≤, r), the construction steps are as follows:
1. Equip each primary object with an eigenclass chain.
2. Extend ≤ according to (ec~3).
3. Extend ϵ by setting (ϵ) = (.ec) ○ (≤).

Canonical eigenclass structure

By a canonical eigenclass structure of ϵ we mean a structure (O, .ec, ≤, r) where O is a set of objects, .ec is the
eigenclass map O → O, ≤ is the inheritance relation between objects, and r is a distinguished object. The
following additional terminology and notation applies:

The object membership relation, ϵ, is the composition (.ec) ○ (≤), .ec  is the reflexive transitive closure of
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.ec, ϵ  is the transitive closure of (≤) ∪ (ϵ). Let .ce, .ce , ϶ and ϶  be inverses of .ec, .ec , ϵ and ϵ ,
respectively.
For an object x, the set x.ec  is the eigenclass chain of x, the set x.↧ / x.↥ / x.϶ / x.ϵ is the set of
descendants / ancestors / members / containers of x. The .pr map is defined by:   x = y.pr   ↔   {x} = y.ce
∖ O.ec.
Let O.ec be the set of eigenclasses, the remaining object being primary, T = O ∖ r.↧ be the set of terminal
objects, C = r.↧ ∖ O.ec be the set of classes, R = r.ec  be the reduced helix, H = r.ϵ  be the set of helix
objects.

A canonical eigenclass structure of ϵ is subject to the following axioms (the separator delimits the 5 axioms of
monotonic eigenclass structures):

(e~1) Inheritance, ≤, is a partial order.
(e~2) The eigenclass map, .ec, is an order-embedding of (O, ≤) into itself.
(e~3) Objects from eigenclass chains of terminals are minimal in inheritance.
(e~4) Every eigenclass is a descendant of the inheritance root.
(e~5) R has no lower bound in ≤.
(e~6) Helix classes are (a) totally ordered by ≤, (b) an upset in ≤, and (c) at least two in number.
(e~7) Objects from R have no siblings in ≤.
(e~8) Every non-helix object is well-founded w.r.t. ϵ.
(e~9) Descendants of non-helix eigenclasses are eigenclasses.
(e~10) For every object x and every class y such that x.ec ϵ y, there is a class a such that x ϵ a ϵ y.
(e~11) Every object x has a least primary container, x.class.
(e~12) The set C of classes is finite.

Conditions marked with "•" have a direct counterpart in the axiomatization of the primary structure.
Notes and observations:

Axiom (e~2) is the essential axiom. It can be equivalently expressed as (≤) = (.ec) ○ (≤) ○ (.ce).
Axiom (e~3) asserts that terminals are unrelated by < to any object and that this property is preserved after a
"free instantiation" of any class.
Axiom (e~4) asserts that r is a "universal object": O = r.϶. Since r is asserted to be a class by e~(1)(2)(4)(5),
every object is an instance of r.
Axiom (e~5) asserts that .ec is a well-founded map. Due to the injectivity asserted by (e~2), .ec establishes
the infinite regress of eigenclasses.
Axiom (e~6) asserts that the restriction to H is (a)(b) as simple as possible but (c) non-degenerate: H ≠ R.
Using the finiteness condition (e~12), H is asserted to form a closure system in (O ∖ T, ≤). In addition, the
existence of a least helix class, c, is ensured.
Axiom (e~7) asserts that the eigenclass chain of c is not used for the connection to the helix. Using .he as
the closure operator for H (i.e. such that r.↧.he = H), (e~7) can be expressed as c ∉ C.he.pr.
Axiom (e~8) asserts that H is exactly the non-well-founded part of the structure. Moreover, x ∈ H iff x ϵ x.
Axioms (e~9) and (e~10) assert a one-to-one correspondence between the well-founded part (O ∖ H, …)
and its restriction (O.pr ∖ H, …) to primary objects.
Axiom (e~10) can be equivalently stated as any of the following:

the member-of-instance-of relation is equal to the instance-of-instance-of relation,
.ec.class = .class.class   (using (e~11)),
.c preserves ϵ   (using (e~11))

Axiom (e~11) asserts that the set O.pr of primary objects forms a closure system in inheritance. We denote
.c the corresponding closure operator so that O.pr = O.c and .class = .ec.c. 
Moreover, this axioms makes (e~4) redundant. (This is because if e~(1)(2) is assumed then:   (e~4)   ↔  
every object has a primary container.)

Notes and observations:
1. A canonical eigenclass structure of ϵ is expressible in the (O, ϵ) signature.
2. Since (e~4) asserts that every object has a primary container, it becomes redundant within canonical

structures due to (e~11).

Correspondence between primary and eigenclass structures
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Correspondence between primary and eigenclass structures

The correspondence between the primary structures and the eigenclass structures is described as follows.
Proposition:
1. The restriction of a canonical eigenclass structure to primary objects is a canonical primary structure.
2. The .c map is a homomorphic projection of (O, ϵ, ≤) onto (O.pr, ϵ, ≤).
3. A tight canonical eigenclass structure is a canonical eigenclass structure satisfying the following stronger

version of axiom (e~9):
(e~9⁺) Descendants of eigenclasses-other-than-r.ec are eigenclasses.

Note that (e~9⁺) restrains the helix entry x.he of explicit metaclasses x other than c to r.ec. As a consequence, if
x, y are explicit metaclasses different from c such that x ϵ y then ≤ cannot be a single inheritance. (Ancestors of
x.ec cannot be linearly ordered in ≤ since y and x.ec.re are incomparable.) A non-tight canonical structure (so
that (e~9⁺) is not imposed) allows single inheritance for arbitrary depth of instantiation.

The diagrams below show the correspondence between a canonical eigenclass structure, its restriction to
primary objects and the subsequent "tight" eigenclass completion. Note that the tree structure of ≤ is not
preserved.

(a)
Canonical eigenclass structure 

(O, .ec, ≤)

(b)
The primary structure of (a) 

(O.pr, .class, ≤)

(c)
The "tight" 

eigenclass completion of (b)

c

r

A

M

N

c

r

A

M

N

c

r

A

M

N

Ruby's additional constraints

The Ruby programming language imposes single inheritance and a single metalevel for classes. These
additional conditions can be respectively written as follows.

(e~13) For every object x, the set x.↥ is linearly ordered by ≤.
(e~9⁺⁺) Descendants of eigenclasses are eigenclasses.   (Equivalently, every class is on metalevel 1.)
The conditions make some of the previous ones redundant. In particular, (e~9) ← (e~9⁺) ← (e~9⁺⁺) is an
obvious implication chain.

Monotonic eigenclass structure of ϵ

The family of structures given by the first five axioms of canonical eigenclass structures can be regarded as the
"essential mathematical model" for the core structure of object technology. This is for the following reasons:

Simplicity. There are five simple conditions that can be stated with only a few preliminary definitions.
Moreover, the structures are fully determined solely by ϵ.
Generality. The monotonicity condition seems to be predominant in object technology so that it can be
regarded as an acceptable (or even desirable) restriction. Similarly, the requirement of every object having
an eigenclass only means that the structures are expressed in their eigenclass completion (which is unique,
up to isomorphism). General monotonic structures (in which .ec is partial) can be thought of as
implementation-oriented refinement that records the "actuality" state of eigenclasses.
Connection to algebraic set theory. Object membership, ϵ, is formed by the composition of .ec and ≤ just

•
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like the membership relation ɛ in Zermelo-Fraenkel algebras.[26] The following table shows the notational
correspondence:

Monotonic eigenclass structure x ϵ y ↔ x.ec ≤ y
Zermelo-Fraenkel algebra x ɛ y ↔ s(x) ≤ y

The next subsection provides a concise and rather self-contained definition of monotonic eigenclass structures.

Monotonic eigenclass structure

By a monotonic eigenclass structure we mean a structure SS = (O, .ec, ≤, r) where
O is a set of objects,
.ec is the eigenclass map O → O,   (objects from O.ec are eigenclasses)
≤ is the inheritance relation between objects,
r is the inheritance root, a distinguished object.

The usual ancestor / descendant terminology is used for inheritance. Objects that are not descendants of r are
terminal(s). Let .ec  denote the reflexive transitive closure of .ec. For an object x, the set x.ec  (the image of {x}
under .ec ) is the eigenclass chain of x.
The structure is subject to the following axioms:

(e~1) Inheritance, ≤, is a partial order.
(e~2) The eigenclass map, .ec, is an order-embedding of (O, ≤) into itself. (≤) = (.ec) ○ (≤) ○ (.ce)
(e~3) Objects from eigenclass chains of terminals are minimal in inheritance. (O × T.ec ) ∩ (<) = ∅
(e~4) Every eigenclass is a descendant of the inheritance root. O.ec ≤ r
(e~5) The eigenclass chain of r has no lower bound in ≤. R.▽ = ∅
The definitions introduced before the axioms of canonical eigenclass structures apply. See also notes to the
axioms.

Decomposition of ϵ

As already shown for the Ruby core sample, any monotonic eigenclass structure can be expressed in the
minimum signature (O, ϵ). The constituents of the original signature are obtained as follows:

x ≤ y   ↔  x.ϵ ⊇ y.ϵ,
x.ec = y   ↔  x.ϵ = y.↥.   (In addition, x.ec = y → x.↧ = y.϶ but "←" does not hold in general.)

Moreover, r is the unique top of O.ϵ.

Monotonic primary structure of ϵ

For the sake of completeness we introduce a generalization of canonical primary structures according to the
following table.

Special General
.ec is total Canonical eigenclass structure Monotonic eigenclass structure
.ec is empty Canonical primary structure Monotonic primary structure

Note:  For simplification, we introduce slight discrepancy with the more precise document [46]. The family of
structures defined in the following subsection should be more correctly called membership-based monotonic
structures since they rely on the prescription

(mp-γ) x ϵ  y ↔ x < r.ϵ  and r.ϵ  ≠ r.ϵ  and r ϵ  y for some natural i
for negative powers of ϵ (ϵ  where k > 0) which we introduce later for basic structures. The correctly defined
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family of monotonic primary structures arises simply as a subfamily of monotonic basic structures in which .ec =
∅ (so that every object is primary).

Monotonic primary structure

By a monotonic primary structure of ϵ we mean a structure (O, ϵ, ≤, r) where O is a set of objects, ϵ is the
membership relation between objects, ≤ is the inheritance relation between objects, and r is the inheritance root,
a distinguished object.

The usual terminology and notation is used for ≤ and ϵ. In addition, the ≤ and < symbols are also used in
the "polar" sense for relations between sets of objects, so that e.g X < Y means that every object of X is less
than every object of Y. Let T = O ∖ O.ϵ.↧ be the set of terminal objects and H = r.ϵ  the set of helix objects
where ϵ  is the transitive closure of (≤) ∪ (ϵ). For a natural i > 0, let ϵ  be the i-th composition of ϵ with itself
and let ϵ  be equal to ≤.

The structure is subject to the following axioms:

(mp-γ~1) ≤ is a partial order.
(mp-γ~2) (ϵ) ○ (≤) = (ϵ) = (≤) ○ (ϵ).   (That is, (a) (ϵ) ○ (≤) ⊆ (ϵ) and (b) (≤) ○ (ϵ) ⊆ (ϵ).)
(mp-γ~3) The inheritance root r is the top of O.ϵ w.r.t. ≤.
(mp-γ~4) Every object has a container, O = O.϶.
(mp-γ~5) Terminal objects are minimal in ≤.
(mp-γ~6) If H ≠ r.ϵ  for every natural i then H has no lower bound in ≤.
(mp-γ~7) For every natural i such that H ≠ r.ϵ ,   if x < r.ϵ  then x.϶ < r.ϵ .

Observation:  For a structure SS = (O, ϵ, ≤, r) the following are equivalent:
i. SS is a canonical primary structure.
ii. SS is a monotonic primary structure satisfying (p~4)–(p~8).

Moreover, the (p~4) condition (Metaclasses can only have classes as instances.) can only be stated for the
metaclass root since other metaclasses are strict descendants of r.ϵ and thus are subject to (mp-γ~7).

 

Basic structure of ϵ

In this section we introduce a common generalization of the hitherto introduced structures that can be regarded
as an abstract set-theoretical model of the core structure of object technology. The generalization can be
roughly characterized by the following steps:

Remove (relax) the monotonicity condition. As already observed in the introduction, in contrast to the
subsumption rule, the monotonicity condition (≤) ○ (ϵ) ⊆ (ϵ) is not universally satisfied when ≤ and ϵ are
interpreted as ⊆ and ∈, respectively.
Allow partial definition of .ec. Until now we have formally described structures that either had no
eigenclasses (primary structures) or in which the eigenclass map was total (eigenclass structures).
Provide a non-monotonic counterpart to .ec. Until now, x.ec, if defined, was the least container of x. The
(≥) = (.ec) ○ (϶) equality indicates that the .ec map is an abstraction of the powerset operator. However, in
set theory, the least set that contains a given set x as an element is {x}, the singleton of x, which is different
from the powerset of a set x (except when x is empty).

This is established by the family of basic structures [46].

Basic structure

By a basic structure of ϵ we mean a structure SS = (O, ϵ , ϵ , r, .ec, .ɛɕ) where
O is a set of objects,
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ϵ  and ϵ  are bi-infinite sequences of relations between objects such that (a) (ϵ) = (ϵ ) for i
≤ 0, (b) (ϵ ) = (ϵ) ○ (ϵ) and (c) (ϵ ) = (ϵ ) ○ (ϵ) for j > 0, and where

(ϵ) = (ϵ ) is the (object) membership relation,
(ϵ) = (ϵ ) is the power membership relation,
(≤) = (ϵ ) is the inheritance relation (with .↧ / .↥ used for preimages / images under ≤),
(ϵ ) is the anti-membership relation,

r is the inheritance root, a distinguished object,
and the remaining two definitory constituents are partial maps O ↷ O (i.e. functional relations between objects):

.ec is the powerclass map   (objects from O.ec are powerclasses),

.ɛɕ is the primary singleton map   (objects from O.ɛɕ are primary singletons).
Note that due conditions (a–c) the two bi-infinite sequences are given by ϵ and the left-infinite sequence
{ ϵ  | i ∈ ℤ, i ≤ 1 }. In particular, we can drop the "wildcard" superscript from ϵ  in the signature. Before stating
the axioms some preliminary definitions need to be introduced.

For every integer i,   ϶  (resp. ϶ ) denotes the inverse of ϵ  (resp. of ϵ ). For a natural i, let .ec(i) be the i-th
composition of .ec with itself, with .ec(0) being the identity on O. Let .ec(-i) be the inverse of .ec(i). Let T =
O ∖ O.ϵ.↧ be the set of terminal objects (or terminals). The metalevel index, x.mli, of an object x is defined
by

x.mli = sup { i | x ϵ  r, i ∈ ℕ }.
Finally, the definition of the rank function, .d, assumes a fixed limit ordinal ϖ in the context. The rank of an
object x is then recursively defined by

x.d = ϖ if x is non-well-founded in ϵ,
x.d = ϖ ∧ (sup {a.d + 1 | a ϵ x} ∨ sup {a.mli + i-j | a ∈ x.϶ .϶ , i,j ∈ ℕ}) if x is well-founded in ϵ.

(We use α ∧ β (resp. α ∨ β) to refer to the minimum (resp. maximum) of ordinal numbers α and β. To be
correct, the prescription requires finiteness of a.mli which is asserted by (b~10).)

The structure is then subject to the following axioms:

The axioms

(b~1) (ϵ) ⊆ (ϵ).
(b~2) (ϵ ) ○ (ϵ ) ⊆ (ϵ )   for every integer i, j.
(b~3) (ϵ) ○ (ϵ) ⊆ (ϵ )   for every integer i.
(b~4) (ϵ ) ∩ (϶ ) = .ec(i)   for every integer i.
(b~5) The inheritance root r is the top of O.ϵ w.r.t. ≤.
(b~6) Every object x has a container, x.ϵ ≠ ∅.
(b~7) For every object x from T ∪ O.ɛɕ and every natural i,   (a) x.϶  = {x}.ec(i), (b) x.϶ .ϵ = x.϶ .ϵ .
(b~8) If x.ɛɕ = y then: (a) {x} = y.϶, (b) x.ϵ  = y.ϵ  for every i ≤ 1, (c) (x,y) ∉ (ϵ).
(b~9) Reserved for the non-member union map.
(b~10) For every object x, the metalevel index x.mli is finite.
(b~11) For every object x,   x.d = ϖ   →   x.ϵ = x.ϵ .   (That is, every unbounded object is a power member.)

Observations:
1. For a suitable choice of (i,j) in (b~2) we obtain transitivity of ≤, subsumption of ϵ , and the monotonicity of ϵ .
2. For i = 0 in (b~3) we obtain the subsumption of ϵ: (ϵ) ○ (≤) ⊆ (ϵ). In contrast, monotonicity is not asserted.
3. For i = 0 in (b~4) we obtain the antisymmetry and reflexivity of ≤ so that ≤ is a partial order on O.
4. (b~5) asserts that O = T ⊎ r.↧. Since r ϵ x ≤ r for some object x it follows by subsumption of ϵ that r ϵ r.

Since r is non-well-founded in ϵ it follows by (b~11) that r ϵ  r. Consequently, for every non-terminal x,   x ϵ  r
by monotonicity of ϵ  and x ϵ r since (ϵ) ⊆ (ϵ).

5. As a particular consequence of (b~6) and (b~7)(b) we obtain that x ϵ  r for every terminal x. It follows that r is
a universal (power) container: O = r.϶  = r.϶.

6. As a particular consequence of (b~7)(a) we obtain that every object from T.ec  is minimal in ≤ (cf. (e~3)).
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Rank

If every object is ϵ-grounded, i.e. connected with a terminal object via ϵ (equivalently, T.ϵ  = O) then the
prescription for the rank function is simplified as follows. Let W be the set of objects that are well-founded in ϵ.
Then

x.d = ϖ if x ∉ W,
x.d = ϖ ∧ sup {a.d + 1 | a ϵ x} if x ∈ W.

That is, x.d = ϖ for all objects x that are either non-well-founded in ϵ or are well-founded and their rank in the
well-founded relation (W,ϵ) is greater or equal to ϖ. For the remaining objects x, let x.d be their rank in (W,ϵ).

The following diagram shows an ad-hoc completion (⁎) making each object of the original structure ϵ-
grounded. Added objects are displayed in khaki color. See [46] for the precise definition.

r_

b

a

Notes and observations:
1. (⁎) As indicated by the case of the a object, new member chains are added even for objects from T.ϵ  so

that the term "completion" is not quite adequate.
2. It is asserted that x.mli ≤ x.d for every object x. However, even memberless objects can have their rank

strictly higher than the metalevel index. This is the case of the b object (2 = b.mli < b.d = 3).
Another simplification arises in the case ϖ = ω. That is, the "default" value of ϖ is the first infinite ordinal so that
the rank of an object is either finite of equal to ω. In this case, .d can be defined by

x.d = sup {a.mli + i-j | a ∈ x.϶ .϶ , i,j ∈ ℕ}.

Bounded membership

The rank function .d is used for distinction between two kinds of objects:
Objects x such that x.d < ϖ are bounded.
Objects x such that x.d = ϖ are unbounded.

The bounded membership relation ∊ is then the domain-restriction of ϵ to bounded
objects, i.e.

x ∊ y   iff   x ϵ y and x is bounded.
The set of bounded objects can be referred to by O.∍ or by r.∍. Every bounded
object is well-founded in ϵ (i.e. ∊ is a well-founded relation) but not necessarily vice versa. We also introduce
the ∊  symbol for (ϵ) ∩ (∊) (the bounded power membership).

Note that axioms (b~1) and (b~11) can be stated as a single condition (ϵ) = (∊) ∪ (ϵ). This establishes an
inclusion lattice between ϵ, ∊, ϵ  and ∊  according to the above diagram on the right.

Singletons

Singletons are the objects from (T.ec ∪ O.ɛɕ).ec  (where .ec  is the reflexive transitive closure of .ec). The
range-restriction of ϵ to singletons is denoted .ɛϲ and called the singleton map. Axioms (b~7)(a) and (b~8)(a)
assert that .ɛϲ is a partial map between objects, so that

x.ɛϲ = y   ↔   {x} = y.϶ and y is a singleton.
Another consequence of the axioms is .ɛϲ.ɛϲ = .ɛϲ.ec – powerclasses of singletons are singletons. The primary
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singleton map .ɛɕ used in the axiomatization equals the difference (.ɛϲ) ∖ (.ec).
The following table shows similarities and differences between .ec and .ɛϲ.

y is the powerclass of x, 
x.ec = y

y is the singleton of x, 
x.ɛϲ = y

Members of y x.↧ = y.϶ {x} = y.϶
Ancestors of y x.ϵ  = y.↥ x.ϵ = y.↥
Metalevel index increment (y.mli - x.mli) 1 1
Rank increment (y.d - x.d) on O.∍ 1 1
x (or y) can be unbounded YES NO

Metaobject structure

The diagram on the right shows a basic structure that is
metaobject complete – the powerclass map .ec (shown by
horizontal blue arrows) is total and the singleton map .ɛϲ
(shown by blue arrows pointing to a circle which indicates a
singleton) is defined on the set O.∍ of bounded objects.
This subfamily of basic structures can be axiomatized as
metaobject structures in the signature (O, ≤, r, .ec, .ɛϲ).
The membership constituents of a basic structure are
obtained as follows:

(∊) = (.ɛϲ) ○ (≤) (bounded membership),
(ϵ) = (.ec) ○ (≤) (power membership),
(ϵ) = (∊) ∪ (ϵ) ((object) membership),
(ϵ ) = (≤) ○ .ec(-k) (anti-membership and its powers, k > 0).

A metaobject structure is subject to the following axioms:

(mo~1)–(mo~5) The same as axioms (e~1)–(e~5) of monotonic eigenclass structures.
(mo~6) The singleton map, .ɛϲ, is injective.
(mo~7) Objects from O.ɛϲ.ec  are minimal in ≤.
(mo~8) For every objects x, y such that x.ɛϲ is defined,   x.ɛϲ ≤ y.ec ↔  x ≤ y.
(mo~9) For every object x,   x.ɛϲ is defined   ↔   x.d < ϖ.
The rank function .d is defined by the same prescription as in basic structures. See [46] for details.

Monotonic structures

Monotonic basic structures are such that (ϵ) = (ϵ). They can be axiomatized in the signature
(O, ϵ , r, .ec) where ϵ  is a left-infinite (or down-infinite) sequence according to the diagram on the
right. The axioms are as follows (using the terminology and notation established for basic structures):

(m~1) (ϵ) ○ (ϵ) ⊆ (ϵ )   for every integer i, j.
(m~2) (ϵ) ∩ (϶ ) = .ec(i)   for every integer i.
(m~3) O.ϵ ≤ r.
(m~4) O = O.϶.
(m~5) For every object x from T and every natural i,   {x}.ec(i) = x.϶ .
(m~6) For every object x, the metalevel index x.mli, defined as sup { i | x ϵ  r, i ∈ ℕ }, is finite.

Structures that have been introduced before the basic structures in this document can be considered to form
subfamilies of monotonic basic structures:

Monotonic eigenclass structures are definitionally equivalent to monotonic basic structures that are
powerclass complete.
Monotonic primary structures (see the note about terminological imprecision before the subsection) are
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obtained from monotonic basic structures by imposing the following condition to negative powers of ϵ:   For
every natural k > 0,

x ϵ  y   iff   there is a natural i such that   (a) r ϵ  y, (b) x < r.ϵ , and (c) r.ϵ  ≠ r.ϵ .
This yields .ec = ∅ as a particular consequence. See [46] for details.

The union map

The (b~9) label is reserved for the axiomatization of the non-member union map, .ⱷ. This is considered to be the
first candidate for a possible expansion of basic structures. The .ⱷ map forms the explicit part of .υ, the union
map, which is a partial map between objects that is an abstraction of the least anti-container and thus of set
union. The .υ map is obtained from .ⱷ by

(.υ)  =  (.ⱷ) ⊎ ((ϵ ) ∩ (϶)).
Axioms of ("non-expanded") basic structures assert that (ϵ ) ∩ (϶) is a partial map. Moreover, the inverses of
.ec and .ɛϲ are distinguished submaps. The presumed axiomatization of .ⱷ is shown below together with the
similar axiom (b~8).

(b~8) If x.ɛɕ = y then: (a) {x} = y.϶, (b) x.ϵ  = y.ϵ  for every i ≤ 1, (c) (x,y) ∉ (ϵ).

(b~9) If x = y.ⱷ then: (a1) x.϶  = y.϶.϶ , (a2) x.϶ = y.϶ , (b) x.ϵ  = y.ϵ  for every i ≤ 0, (c) (x,y) ∉ (ϵ).

Unfortunately, the .ⱷ map also requires an adjustment to the definition of the rank function .d (see [46] for
details).

Complete structure of ϵ

A basic structure SS = (O, ϵ, ϵ , r, .ec, .ɛɕ) is said to be complete if it satisfies the following conditions:
(A) SS is extensionally consistent: For every objects x, y,   x ≤ y   ↔   x = y or ∅ ≠ x.∍ ⊆ y.∍.
(B) SS is metaobject complete: (a) SS is powerclass complete and (b) SS is singleton complete.
(C) SS is extensionally complete: For every subset X of O.∍ there is an object x such that x.∍ = X.
(D) SS is ∊-ranked: For every object x,   r∊(x) (the ∊-rank of x) equals x.d.

We also say that SS is a complete structure (of ϵ). Note that due (B), SS can be considered a special case of a
metaobject structure. Every complete structure SS is uniquely given by the bounded membership ∊ according to
the following table:

Inheritance x ≤ y   ↔  x = y or ∅ ≠ x.∍ ⊆ y.∍
Inheritance root r.∍   =  O.∍
Bounded inheritance x ∊  y   ↔  x ≤ y and x ∈ O.∍
Singleton map x.ɛϲ = y   ↔  {x} = y.∍
Powerclass map x.ec = y   ↔  x.∍  = y.∍
Power membership x ϵ  y   ↔  x.∍  ⊆ y.∍
Object membership x ϵ y   ↔  x ∊ y or x ϵ  y

The bounded inheritance relation is the zeroth power of ∊, similarly to the (≤) = (ϵ ) correspondence. By
definition, x.∍  = x.↧ ∩ O.∍. There are other simplifications via ∊:

Terminal objects T   =  O ∖ O.∊
Metalevel index x.mli   =  min {i | x ∈ T.∊ , i ∈ ℕ }
Rank x.d   =  sup {a.d + 1 | a ∊ x}

The equalities for .mli and .d can be described as follows.

-k i i+k i+k i+k-1

•

-1

-1

i i-1 ¯

¯ ¯ 2 i i-1

•

¯ ⁽*⁾

0

0

¯ 0

¯

0
0

i

41



⊤

⊤

⊤

r

r1

r2

r3

_

_

_

= rω__

SS is ∊-levelled, that is, every non-terminal object has a bounded member with a lesser metalevel index.
SS is ∊-ranked, that is, x.d equals the ∊-rank of x for every object x.

Moreover, there is a simple and transparent axiomatization of complete structures via (O, ∊). Such an
axiomatization can be provided in a generalization for arbitrary rank of ∊, as shown in the next subsection.
(Realize that r.d equals by definition a fixed limit ordinal ϖ. Since r.d is also the ∊-rank of r and r.∍ = O.∍ it
follows that the rank of (O, ∊) equals ϖ+1.)

Superstructure

By an (abstract) superstructure we mean a structure (V, ∊) (where V is the set of objects, and ∊ is a relation
between objects) such that the following conditions hold.

(1) ∊ is well-founded.   For a subset X of V let us denote r(X) the ∊-rank of X.
(2) For every non-empty set X of objects such that r(X) < r(V) there is a unique object x such that x.∍ = X.
The existence and uniqueness of the x object in (2) can be stated separately:

(2a) For every set X of objects such that r(X) < r(V) there is an object x such that x.∍ = X.
(2b) For every objects x, y from V.∊,   if x.∍ = y.∍ then x = y.   (Weak extensionality of ∊)

It can be shown that up to isomorphism, every non-empty superstructure (V, ∊) is uniquely given by the pair (α,
κ) of non-zero ordinal numbers where α is the ∊-rank of V and κ is the cardinality of the ground stage (which is
the set V ∖ V.∊ of objects with zero rank, i.e. the set of terminal objects).

For convenience, we let the term α-superstructure mean a superstructure (V, ∊) whose ∊-rank equals α. The
axiomatization of complete structures via ∊ can be then expressed as follows:

(O, ϵ, ϵ , r, .ec, .ɛɕ) is a complete structure of ϵ   ↔   (O, ∊) is an (ϖ+1)-superstructure.

That is, the bounded membership ∊ in a complete structure forms an (ϖ+1)-superstructure, and, conversely, an
(ϖ+1)-superstructure (O, ∊) induces a complete structure SS according to the table above. Bounded
membership in SS coincides with the original ∊ relation.

Stages

Any superstructure can be thought to be built in stages. For an
ordinal number i, the i-th stage, Vi, consists of objects whose
rank is strictly less than i. In the case of an (ϖ+1)-
superstructure (O, ∊) we obtain the following sequence:

V0 = ∅,
V1 = T = O ∖ O.∊   (the ground stage),
Vi+1 = { x | x.∍ ⊆ Vi },
Vi = ∪{ Vj | j < i } for a limit ordinal i,
Vϖ = O.∍ = r.∍   (bounded objects),
Vϖ+1 = O.

Except for V0 and Vϖ+1 each stage Vi is an ∊-preimage of a
unique stage object, ri (see the diagram on the right, note that
singletons not from T.ec  are not shown).

Kinds of superstructures

With some adjustments, the definitional extension of an (ϖ+1)-superstructure (O, ∊) as specified above can be
applied to arbitrary superstructures (V, ∊). Apart from the degenerate cases of empty ∊, the adjustments to be
made are the following:

Instead of referring to r as the unique object whose existence is guaranteed, introduce a predicate "x being
an inheritance root":   x is such that x.∍ = V.∍.
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Add the ∅ ≠ x.∍  condition in the definitions of .ec and ϵ .
We can then classify superstructures according to the properties of their definitional extensions:

(Let ϖ be a limit ordinal and α an arbitrary ordinal.) ZFC MK Degenerate cases
V = Vϖ V = Vϖ+1 V = Vα+2 V = V1 V = V0

Rank of V ϖ ϖ + 1 α + 2 1 0
Bounded objects V.∍ V Vϖ Vα+1 ∅ ∅
Existence of the (an) inheritance root r (r.∍ = V.∍) NO YES YES NO, unless

V = {r}
NO

Powerclass map .ec is total YES YES NO YES
Singleton map .ɛϲ is total YES NO NO NO YES
Boundedness preserved by .ec / .ɛϲ YES YES NO YES YES

The ZFC and MK labels indicate a connection to set theory. For an inaccessible cardinal ϖ, a superstructure (V,
∊) whose ground stage contains exactly one object (i.e. ∊ is extensional) is a model of set theory:

ZFC (Zermelo-Frankel set theory with the Axiom of Choice) if the rank of ∊ equals ϖ,
MK (Morse-Kelley set theory) if the rank of ∊ equals ϖ + 1.

Complete structures belong to the MK-group.
Note:  In [27], the singleton map .ɛϲ is total – unbounded objects have their singleton constantly set to r
(considering (V, ∊) as a model of MK).

Completion

Every basic structure can be faithfully embedded into a complete structure. That is, if SS0 = (O0, ϵ, ϵ , r, .ec,
.ɛɕ) is a basic structure then there is a complete structure VV = (V, ϵ, ϵ , rϖ, .ec, .ɛɕ) and an embedding map .ν
from O0 to V such that the following conditions are satisfied:

i. .ν is embedding w.r.t. ϵ  and ϵ  for every integer i,
ii. r.ν = rϖ,
iii. .ν is embedding w.r.t. .ec and .ɛϲ,
iv. .ν preserves being a primary object, i.e. O0.pr.ν ⊆ V.pr,
v. .ν preserves the rank, i.e. x.d = x.ν.d for every x ∈ O0.

Note:  If R denotes a relation both in SS0 and VV then .ν is an embedding w.r.t. R if the following equivalence
holds for every objects x, y from O0:

(x,y) ∈ R   ↔   (x.ν, y.ν) ∈ R.

The embedding is established in the following steps:
1. Rank pre-completion. This step can be omitted for ϖ = ω. Otherwise, attach a set X of ϖ new members to

each primary non-well-founded object x that is not ∊-ranked. The members are attached in such a way that
(X, ϵ, ≤) is isomorphic to (ϖ, ∈, ⊆).

2. Powerclass completion. Append an infinite powerclass chain to each object for which the powerclass is not
defined. The resulting structure is powerclass complete.

3. Singleton completion. Append an infinite singleton chain to each bounded object for which the singleton is
not defined. Technically, this can be done in two steps by first adding just the missing primary singletons
and subsequently performing the powerclass completion.

4. Extensional pre-completion. (⁎) To every object x that is not extensionally consistent, i.e. for which there
exists y such that the following equivalence is not satisfied,

x ≤ y   ↔   x = y or ∅ ≠ x.∍ ⊆ y.∍,
attach two powerclass chains each of which starts in a terminal object. The resulting structure is pre-
complete, that is,

extensionally consistent   (the above equivalence holds for every objects x, y),
powerclass consistent   (that is, if x is powerclass-like then x is a powerclass – see [46] for details),
powerclass complete,
singleton complete   (every bounded object x has a singleton x.ɛϲ), and
∊-ranked.
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In particular, the structure is fully determined by bounded membership ∊ according to the same prescription
as with complete structures.
Note:  (⁎) A simplified description is provided here, see [46] for the detailed description.

5. Cumulative embedding into an (ϖ+1)-superstructure. Let SS = (O, ∊) be the pre-complete structure to be
embedded. Choose an (ϖ+1)-superstructure VV = (V, ∊) so that its ground stage V1 has the same
cardinality as the set T of terminal objects of SS. Then the requested embedding map .ν is obtained as a limit
of a transfinite sequence

.ν0, .ν1, …, .νϖ = .ν
of maps from O to V defined as follows:
I. The restriction of .νi to terminals is for every i identical and forms a bijection between T and V1.
II. The restriction of .νi to the set O.∊ of non-terminal objects x is recursively defined by

x.ν0.∍ = x.∍ .ν0.ec.∍ ∪ x.∍.ν0,
x.νi.∍ = x.϶ .νi-1.ec.∍ ∪ x.∍.ν0 if i is a successor ordinal,
x.νi.∍ = ∪{ x.νk.∍ | k < i } if i is a limit ordinal.

Note that the definition of .ν0 is by the well-founded recursion on (O, ∊), whereas the definition of .νi for
i > 0 uses transfinite recursion over i.

Powerclass completion

Powerclass completion deserves particular attention since it is actually implemented in Ruby. For canonical
primary structures, the completion has already been described, see the (ec~3) condition. (Since (ϵ) = (ϵ), the
term "eigenclass" is used for "powerclass".)

In general, for a basic structure SS0 = (O0, ϵ▫, ϵ▫ , …), its powerclass completion SS = (O, ϵ, ϵ , r, .ec, .ɛɕ) is
created in the following steps:
1. Prolongate powerclass chains to infinity, that is, extend (O0, .ec) to (O, .ec) so that

.ec is an injective well-founded map on O and O0 ∖ O0.ec = O ∖ O.ec   (new objects are powerclasses).
2. Extend membership and power membership powers to new objects. 

For every primary objects a, b and every natural i, j such that at least one of a.ec(i) or b.ec(j) is new,
a.ec(i) ϵ b.ec(j)   iff  a ϵ▫  b,
a.ec(i) ϵ  b.ec(j)   iff  a ϵ▫  b     for every integer k.

Representation by sets

As already foreshadowed in the context of superstructures, the main correspondence between objects and well-
founded sets can be expressed by

∊   ↔   ∈ .

That is, bounded membership, ∊, is an abstraction of set membership, ∈. Assuming powerclass completeness
for simplicity, the set-theoretic interpretation of the 3 main constituents of the core structure of object technology
can be informally described via the following correspondences:

≤ ↔ ⊆, that is, inheritance is an abstraction of set inclusion,
x.ec ↔ r ∩ ℙ(x), that is, the powerclass map is an abstraction of relativized powerset operator,

ϵ ↔ ∈ plus .ec.↥ that is, object membership is like set membership augmented with the inclusion of
the powerclass.

The von Neumann universe

Let � be the von Neumann universe of all well-founded sets. Recall that � is obtained from the empty set by
iterative application of the powerset operator ℙ. For every ordinal α,

�α = ∪{ ℙ(�β) | β < α },   that is, �0 = ∅,
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•

¯

¯ ⁽*⁾ ¯ ⁽*⁾

¯1+i-j

¯k ¯k+i-j
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�α = ℙ(�α-1) if α is a successor ordinal,
�α = ∪{ �β | β < α } if α is a limit ordinal,

� = ∪{ �α | α ∈ On }.   (α ∈ On means that α is an ordinal.)
The rank function r() on � is defined by

r(x) = α   ↔   x ∈ �α+1 ∖ �α.
For every ordinal α,   �α is a set whose members are exactly the sets x such that r(x) < α. The axiom of
foundation says that every set belongs to �.

(ϖ+1)-superstructure in ∈

The (ϖ+1)-superstructure VV = (V, ∊) referred to in the last step of the completion of object membership can be
chosen as a restriction of the set membership structure in the von Neumann universe. Given the requested
cardinality κ of the ground stage, one can proceed as follows.
1. Determine the ground stage. Choose V1 to be a set such that

a. V1 ⊆ �α+1 ∖ �α for some ordinal α,
b. every element of V1 is a singleton set   (so that V1 is an antichain w.r.t. ⊆),
c. the cardinality of V1 equals κ.

Since for every ordinal i, the set �i+1 ∖ �i has cardinality at least i, we can put α = κ+1.
2. Cumulate the remaining stages. Similarly as with the von Neumann hierarchy, construct a transfinite

sequence of stages up to the (ϖ+1)-th stage.
V0 = ∅,
Vi = V1 ∪ (ℙ(Vi-1) ∖ {∅}) if i is a successor ordinal, (in contrast, �i = ℙ(�i-1))
Vi = ∪{ Vj | j < i } if i is a limit ordinal,
V = Vϖ+1.

As a result, (V, ∈) is an (ϖ+1)-superstructure such that for every x, y from V,
r(x) = α + x.d,
x ≤ y   ↔   x ⊆ y.

Basic structure as a set

Since every basic structure can be embedded into an (ϖ+1)-superstructure which in turn can be embedded into
the von Neumann universe, it follows that every basic structure SS can be represented by a well-founded set O.
The following table shows how the main constituents of SS can be expressed in set-theoretic terms. (Recall that
ℙ₁(x) is the set of singleton subsets of x.)

Terminal objects T   =  O ∩ ℙ₁(∪O ∖ O)
Inheritance root r   =  ∪O ∖ ∪T
Complete extension V   =  r ∪ (ℙ(r) ∖ {∅})

For every x, y from O :
Bounded membership  x ∊ y   ↔  x ∈ y
Inheritance x ≤ y   ↔  x ⊆ y
Singleton map x.ɛϲ = y   ↔  {x} = y
Powerclass map x.ec = y   ↔  r ∩ ℙ(x) = y
Power membership x ϵ  y   ↔  r ∩ ℙ(x) ⊆ y
Object membership x ϵ y   ↔  r ∩ ℙ(x) ⊆ y or x ∈ y

The V set represents a complete basic structure VV that is a faithful extension of SS.
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Specializations of ϵ

This section describes how the canonical structure of object membership can be applied to object models of
particular languages. We focus on 8 class-based programming languages Ruby, Python, Smalltalk-80, Java,
Scala, CLOS, Objective-C, and Perl which have already been considered for the sample structure of the
instance-of relation. Prototypal languages (JavaScript), ontology languages (RDFS) and the Dylan programming
language (as the only representant of non-monotonic membership) are discussed separately. Similarly, the
support of actual eigenclasses is described in another section.

In a particular programming language, object membership appears in a specialized form. Such a
"specialization" can be obtained by adjustments to the canonical structure of ϵ. In most cases (5 of 8), it is
necessary to refine the structure by additional constituents so that the minimum signature (O, ϵ) needs to be
extended.

In Ruby

We have already described the Ruby's additional constraints for the canonical structure: single inheritance and
single explicit metaclass (C ∩ c.↧ = {c}). As of Ruby 1.9 (and newer), there are 4 helix classes:

c = Class < Module < Object < BasicObject = r.
As a consequence of single inheritance, the structure is determined by superclass and eigenclass links,
corresponding to the superclass and singleton_class introspection methods, respectively.

However, this is only the (canonical) reduct of what is understood by object membership in Ruby. The "full"
membership, ϵ , results from a finer structure which takes module inclusion into account. Modules are terminal
instances of the Module class, i.e. modules are Modules that are not Classes. The additional structure is given
by the own-includer-of relation between Modules (classes, eigenclasses, modules) and modules. If Μ denotes
the reflexive closure (i.e. Μ is self-or-own-includer-of) then the ϵ  relation is given by

(ϵ ) = (ϵ) ○ Μ.
This extended membership corresponds to the is_a? introspection method (aliased by kind_of? and, in the
inverse, also by Class#===). You can check that previously we stated the is_a?↔ϵ correspondence just for
the provided sample structures. Similarly, the "canonical" inheritance, ≤, is extended to ≤  by

(≤ ) = (≤) ○ Μ
which, in the restriction to Modules, corresponds to the <= introspection method. This extended inheritance is a
multiple inheritance. In addition, since Ruby supports dynamic module inclusion, ≤  can have anomalies (as to
transitivity and/or antisymmetry), the problem known as the double/dynamic inclusion problem. [18]

In Python

Assuming consistent setting of the __mro__ attribute of classes, Python core structures are exactly the primary
structures (O.pr, ϵ, ≤) with two helix classes. (Therefore, the Python object model conforms to the tight
canonical structure.) Helix classes are named as follows:

c = type < object = r

In Scala and Java

In Scala and Java, the term "classes" is used just for a subset of the set C of primary descendants of r. The
subset forms a closure system in (r.↧, ≤), so that it can be expressed as C.c where .c is an explicit closure
operator added to the canonical structure. The generalized structure is then of the form (O, ϵ, .c). This way the
set C is split into classes and non-terminal mixins. In Scala, mixins are called traits, in Java they are interfaces.
Mixins are not allowed to be metaclasses.

The structure is then subject to additional constraints. There are no explicit metaclasses other than c, and,
more importantly, a single inheritance between classes applies (but not between traits / interfaces). The helix
contains 3 classes:
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c = Class < Object < Any = r.
For Java, the Any class can be thought of as a fictitious root allowing primitive values to be objects – they
become objects that are not Objects. Mixins (traits / interfaces) are among descendants of the Object class.
Java in addition disallows interleaving interfaces with classes, so that x.c = Object for every interface x.

In Smalltalk-80

Both Pharo and Squeak, the two major Smalltalk-80 implementations, provide several ways to break
fundamental characteristics of the core structure such as the one-to-one correspondence between classes and
implicit metaclasses or acyclicity of inheritance. The diagram below shows that (1) instantiating the class named
Behaviour (or Class or ClassDescription) creates a "dangling class", (2) instantiating the class named
Metaclass creates a "dangling metaclass", (3) a class can be made a direct inheritance descendant of its
metaclass. The superclass: method allows to change the superclass link to point to (presumably) arbitrary
non-terminal object so that cycles can arise.

c

r
Object

B

mc

a

b

m

(Pharo 1.3 / Squeak 4.2)

r  := ProtoObject.
b  := Behavior.
c  := Class.
mc := Metaclass.
(1) a := Behavior new.
(2) m := Metaclass new.
(3) Object subclass: #B.

B superclass: (B class).

We assume that the above anomalies are only allowed due to negligence of implementations, not by design. To
rule out the anomalies, we only consider structures created

without instantiation or subclassing of Behavior or of its descendants,
without using the superclass: setter.

As already demonstrated on the sample core structure, the Smalltalk-80 object model does not conform to the
canonical structure of ϵ due to the metaclass redirection. This is expressed via an imposed metaclass root ȼ,
named Metaclass, which induces the corresponding imposed class map, .ȼlass. This map coincides with the
standard .class map except for implicit metaclasses, where it "redirects" the value from the Class class to the
Metaclass class, introducing monotonicity breaks with respect to inheritance. Note that the class
introspection method does not correspond to .ȼlass but to .aȼlass (the imposed actualclass map) which takes
object actuality into account.

Another quirk that can be captured by an appropriate generalization of the canonical structure is formed by
additional twist links. These are inheritance child-parent pairs (x.ec, c) where x is a "subsidiary" inheritance root
– a built-in parentless class other than r. Each of Pharo and Squeak contains one such class, named
PseudoContext and ObjectTracer, respectively.

The helix chain contains 5 classes:

c = Class < ClassDescription < Behavior < Object < ProtoObject = r
The Metaclass class is a sibling of the Class class. Metaclasses can be defined as C.ȼlass.↧ – this makes
Class and Metaclass the only explicit metaclasses. Finally, the Ruby conditions apply: single inheritance and
single metalevel for classes.

Traits

Similarly to Ruby module inclusion, Smalltalk-80 supports extension of inheritance via inclusion of terminal
objects, called traits.[56] Traits are Traits – instances of the built-in Trait class. Unlike in Ruby, the
semantics of extended object membership, ϵ , is not reflected by the isKindOf: introspection method (as of

•
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Pharo 1.3).

In Objective-C

In Objective-C, the eigenclass model has to be generalized to allow multiplicity and degeneracy of inheritance
roots. There are several components of object membership, each with its own inheritance root. In each
component, the inheritance root r is the only helix class so that r.class = r. Equivalently, (r.ec, r) is the twist
link.

As of GNUstep, there are (at least) 3 built-in inheritance roots, named Object, NSObject and NSProxy. Like
in Smalltalk-80, the Ruby conditions apply: single inheritance and single metalevel for classes. As a
consequence of degeneracy, metaclasses cannot be expressed as C.class.↧ since this set contains all classes.
One possible solution is to simply define a metaclass as an object on the metalevel 2 or higher (so that there
are no explicit metaclasses).

In CLOS

The Common Lisp Object System deviates from the canonical structure in two features. It introduces non-linear
inheritance between helix classes as well as an imposed class map with monotonicity breaks w.r.t. inheritance.
Unlike in Smalltalk, this imposed class map cannot be expressed via a constant "redirection" target. As of CLISP
2.49, there are 8 helix classes:

c = class < clos::potential-class < … < standard-object < T = r
The missing 4 classes do not form a chain in inheritance. Like in Python, there are no additional constraints:
multiple inheritance is supported as well as creation of explicit metaclasses.

In Perl 5

As already shown on the sample structure, the Perl object model is distinguished by total circularity of classes:
Every class is the class of itself. This is equivalent to say that Perl establishes the (C, ≤) = (C, ϵ) equality: the
instance-of relation, in its restriction to classes, coincides with the inheritance relation. This way Perl merges the
two different meanings of is-a. Consequently, the isa introspection method can be used both to detect
membership as well as inheritance.

As for metaclasses, we can apply the solution proposed to Objective-C and define metaclasses to be the
objects on metalevel 2 or higher. Since Perl does not have any actual objects on these metalevels, there are no
actual metaclasses.

In Perl, multiple inheritance is allowed. The built-in class named UNIVERSAL stands for the inheritance-root r.
However, the assumption is needed that the @ISA variable of this class is not changed.

Eigenclass actuality

The concept of eigenclass actuality has already been introduced for the Ruby core structure. Any in-memory
representation of object membership can only store a finite "front" part of the structure. We call objects from this
substructure actual(s). In languages that do not support ϵ refined by implicit objects, the actual objects are
exactly the primary ones. In general, some eigenclasses may also be actual.

Given a monotonic eigenclass structure (O, ϵ), possible subsets A of actual objects can be axiomatized as
follows. (For a set X of objects, we let X.⋀ be the set of all strict upper bounds of X.)

(a~1) A is finite.
(a~2) A ⊇ O.pr.   (Every primary object is actual.)
(a~3) A ⊇ A.ce.   (If x.ec is actual then so is x.)
(a~4) A is a closure system in ≤.   (Every object has a least actual ancestor.)
(a~5) A ∩ H = (R ∖ A).⋀.   (There exist a natural k such that for every helix object x,   x ∈ A ↔ x.mli < k.)
Conditions (a~4) and (a~5) assert that there is a "twist" pair of objects t, u such that u ≻ t ∈ R and u.↥ = A ∩
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H. (That is, u is the unique inheritance parent of a metalevel top t, and u is the bottom of all actual helix
objects.) Since A is a closure system in inheritance, there is a corresponding closure operator, .a, and the
corresponding actualclass map, .aclass = .ec.a. For an object x, the actualclass of x is the least actual
container of x.

In canonical structures, the .aclass map forms a tree (similarly to .class). The u object that is the bottom of A
∩ H belongs to the eigenclass chain of c (the instance / metaclass root) and is the unique fixpoint of .aclass
(that is, u is the root of the actualclass tree). Observe also that

x.ec ≤ x.aclass ≤ x.class.
While .ec is a conceptual refinement of .class, the actualclass map is an implementation-oriented refinement.
The .aclass map is identical to the .class map iff no eigenclass is actual.
Note:  In most cases (e.g. in the introductory sample), the blue arrows contained in the diagrams show the
actualclass map. (In general, blue arrows have been used to display .aclass or .class or .class.↥ or .aȼlass.)

Specializations

In Python, Java, CLOS, and Perl, eigenclasses are purely fictitious – they are never actual, so that the
actualclass map coincides with the class map. Scala allows eigenclasses of terminal objects, e.g. via the
object definition. In Smalltalk-80 and Objective-C, the set of actual eigenclasses equals C.ec.

In Ruby

In Ruby, all objects that are not immediate values can have actual eigenclasses. As of MRI/YARV 1.9
inheritance ancestors of actual objects are actual, i.e. for the set A of actual objects

(a~6) A is an up-set in ≤.
This condition is thus satisfied for implementations of all languages with (e~9⁺⁺) considered in this document.
(In general, A needs to be replaced with A ∪ {r.ec}.)

Ruby is the only language that supports dynamic eigenclass allocation. Typically, for an object x, the
eigenclass x.ec becomes actual by defining "singleton" methods for x. For efficiency, there are more allocated
eigenclasses than those accessed from the user code. This induces 2 different extents of actuality, as described
before.

In Smalltalk-80

In Smalltalk, the imposed class map, .ȼlass, has the corresponding imposed actualclass map, .aȼlass, which
corresponds to the introspection method named class. Due to the metaclass redirection, .aȼlass does not form
a tree but just a (directed) pseudotree with a 2-element cycle containing the Metaclass class and its
eigenclass.

The Dylan core structure

The Dylan programming language is presumably the first language that introduced singleton objects and
probably the only language (as of 2014) that supports – at least experimentally – both powerclasses and
universal singletons. The singleton support makes Dylan the only non-monotonic language considered in this
document.

Non-terminal objects in Dylan are called types [20a]. The following table shows 3 supported kinds of types
that have correspondence to basic structures.

Kind of Dylan "types" Our terminology Evaluation Instances of
(via instance?)

Classes <class>
Singletons x.ɛɕ ↔ singleton(x) <singleton>
Subclass types [54] Powerclasses outside O.ɛϲ x.ec ↔ subclass(x) <subclass> (⁎)
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Notes:
1. (⁎) As of Open Dylan 2013.2, the <subclass> class is not referenced by its name.
2. Evaluation of subclass(x) is supported for every x that is a class.
3. Evaluation of singleton(x) is supported for all objects x. As a consequence, there cannot be a perfect

correspondence between singletons in Dylan and singletons in basic structures since the latter ones are
only defined for bounded objects.

4. Every evaluation of singleton(x) or subclass(x) (even when performed repeatedly with the same
argument x) returns a new object. Such objects can be thought of as equivalent representants of a given
singleton or powerclass.

Sample

The following diagram shows a sample core structure of Dylan. Inheritance between non-terminal objects can
be detected by the subtype? method. The composition of blue arrows with inheritance – object membership in
Dylan – is exactly what is detected by the instance? method. All powerclasses of classes (i.e. all the
supported powerclasses w.r.t. given set of classes) are displayed. In contrast, supported singletons are only
shown for some objects.

ty

A

lt

B

u

r

c

su

si

(Open Dylan 2013.2)

let r  = <object>;
let ty = <type>;
let c  = <class>;
let si = <singleton>;
let lt = last(direct-superclasses(si));
let su = object-class(subclass(r));
let A = make(c);
let B = make(c, superclasses: list(A));
let u = make(B);

lt … <limited-type>
su … <subclass>

Observations:
1. There is a correspondence between "subclass types" in Dylan and metaclasses in Smalltalk-80.

Dylan Smalltalk-80
Powerclasses of classes (C.ec) are termed:  Subclass types (Implicit) metaclasses
The (imposed) metaclass root ȼ is named:  <subclass> Metaclass
For a class x, the powerclass x.ec is evaluated by:  subclass(x) x class
The imposed class map .ȼlass is introspected by method:  object-class —
The imposed actualclass map .aȼlass is introspected by:  — class

2. There is a cycle in membership caused by singletons. According to the instance? method,
<singleton> and singleton(<singleton>) are members of each other.

3. Powerclasses (Dylan's "subclass types") can only have classes as members. As a consequence,
(≤) ○ (.ec) ⊆ (ϵ) is not satisfied in general. For example, u.ɛϲ (the singleton of the terminal object u) is from
B.↧ but not from B.ec.϶.

Prototypes

•
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It is also possible to refine the instance-of relation the opposite way by eigenclass predecessors of objects,
rather than successors. Such implicit objects are called (instance) prototypes. The prototype of a class y,
denoted y.ce, is the highest instance of y, i.e. every instance of y is an inheritance descendant of y.ce. In
contrast to eigenclasses, we only consider prototypes of classes. First, it does not (seem to) make sense to have
instance prototypes of terminal objects. Second, having no prototypes of prototypes simplifies the description.

Formally, object membership with prototypes can be defined by combining eigenclasses and prototypes. In
the specialized document [49], S1ȷ structures are introduced as structures (Θ, O, ϵ) such that (Θ, ϵ) is a
canonical eigenclass structure without terminal objects, and O is a subset of Θ such that the substructure (O,
ϵ) is a canonical eigenclass structure whose non-terminal objects form the set Θ.ec.↧. Objects from Θ ∖ O are
the instance prototypes. The inclusion Θ.ec.↧ ⊆ O establishes a one-to-one correspondence between the i-th
metalevel of (Θ, ϵ) and the (i+1)-th metalevel of (O, ϵ) for each natural i.

Sample

The following diagram shows the prototypal completion of the instance-of sample. Blue links display the
restriction of the class map to the set C.ce of prototypes, let it be denoted .ͼlass. The (unrestricted) .class map
is inherited from .ͼlass The instance-of relation is given by (ϵ) = (≤) ○ (.class), or by (ϵ) = (≤) ○ (.ͼlass), or also
by (϶) = (.ce) ○ (≥). (In this particular case we do not need to distinguish between member-of and and instance-
of.)

u
v

s

r

c

A

B

(JavaScript)

var r, c, A, B, s, u, v;
r = Object
c = Function
A = new c
B = new c; B.prototype.__proto__ = A.prototype
s = new A
u = new B; v = new B

The missing inheritance between classes:
A.__proto__ = c.__proto__ = r; B.__proto__ = A

Note that r.ce becomes the "new" inheritance root – the unique common ancestor of all objects (in contrast to r
which is just a common root for non-zero metalevels).

In JavaScript

As of ECMAScript, 5th Edition, [17] the JavaScript programming language provides a limited native support for
object membership. The (ideal) structure is established by 3 (partial) maps between objects, .sc', .class, and
.ce, given by object properties named __proto__, constructor and prototype, respectively. For an object x
and a class y,

x.__proto__ is the inheritance parent of x,
x.constructor is the class of x,
y.prototype is the instance prototype of y.

The constructor property is owned by prototypes and inherited by other objects. In contrast, __proto__ and
prototype are never (strictly) inherited. The __proto__ property is non-standard. When not supported,
Object.getPrototypeOf(x) can be used for introspection. The instance-of relation can be introspected via
the instanceof operator, except that y.prototype is not reported as an instance of y.

The Ruby conditions apply: single inheritance between objects and single metalevel for classes. In contrast to
Ruby, Smalltalk or Objective-C, JavaScript does not support parallel metalevel hierarchies. Only inheritance
between prototypes is supported, not between classes. This is why we wrote .sc' instead of just .sc. According
to .sc', the inheritance parent of every class is c.ce (Function.prototype). However, the modification (≤) →
(≤') = (≤) ∖ (C, <) has no impact to the instance-of relation: we still have (ϵ) = (≤') ○ (.class) = (≤') ○ (.ͼlass).
There are two helix classes:

c = Function < Object = r.
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Note that we wrote <, not <' which does not hold.
As the names constructor or Function suggest, JavaScript uses another terminology for the class map or

the class set. In JavaScript, classes are constructors and also functions. Every constructor is a function.
Functions are the Functions. Except for c.ce and for native built-in functions like eval or parseInt, every
function is also a constructor. Being terminal instances of c, the native built-in functions account for the
relaxation of (p~5). Another deviation from the canonical structure is caused by the built-in
Function.prototype.bind method. A constructor x created using this method shares its instance prototype
x.ce with the constructor to which x is bound (although x.ce is not obtained via x.prototype.)

The above description of the JavaScript native core structure is only valid under ideal circumstances which are
not guaranteed by the ECMAScript standard. For example, the constructor or prototype properties can be
almost arbitrarily manipulated. To ensure validity, additional restrictions have to be imposed on state transitions.

Ontological structure of ϵ

A generalization of the canonical structure of ϵ allows for a description of the core structure of ontologies in
which classes are (among) individuals. We introduce a two-step generalization motivated by the RDF
Schema.[63] [64] The "narrow" definition can be characterized by the following features:

Distinction of properties as instances of a special class, p. Properties, like terminal objects, are not
descendants of the inheritance root. In contrast to terminals, properties can have (other properties as)
ancestors / descendants.
Inheritance does not have to be antisymmetric – distinct classes or properties can be descendants of each
other and thus become equivalent.
Multiple classification – an object x can have multiple minimum classes of which x is an instance, so that the
existence of x.class is not guaranteed.

Disallowing the above features leads to primary (canonical) structures. The "broad" definition further generalizes
the "narrow" definition by only using those constraints that are imposed by RDFS axioms and entailments rules.

Narrow definition

By a primary ontological structure of ϵ we mean a structure (Ō, ϵ, ≤, r, c, p) with a similar terminology, notation
and axioms as canonical primary structures. The differences are as follows. p is a distinguished object whose
instances are called properties. We denote P the set of all properties. The set T of terminal objects equals Ō ∖
(C ∪ P). The structure is then subject to the following axioms:

(o~1) Inheritance, ≤, is a preorder.
(o~2) (a) (ϵ) ○ (≤) ⊆ (ϵ) and (b) (≤) ○ (ϵ) ⊆ (ϵ).
(o~3) (a) Only classes can have instances. (b) Terminals have no strict descendants.
(o~4) Helix classes are (a) totally pre-ordered by ≤, and (b) instances of each other.
(o~5) Metaclasses can only have classes as instances.
(o~6) Every non-helix object is well-founded w.r.t. ϵ.
(o~7) (a) Ō = r.϶. (b) C.ϵ ⊆ c.↥ ∪ c.↧.
(o~8) The set C of classes is finite.
(o~9) c is a least helix class.
(o~10) p is a class not from c.↥ ∪ c.↧.
Notes and observations:
1. Non-equivalence of r and c is asserted by (o~10).
2. Condition (o~7) is a weakening of the class map axiom (p~7). It asserts that (a) every object has a container,

and (b) only helix classes or metaclasses can have classes as instances.
3. Condition (o~10) asserts disjointness of classes and properties so that Ō = T ⊎ P ⊎ C.
4. Primary (canonical) structures (equipped with a "pointed" class p) are the primary ontological structures

such that

•

•
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≤ is antisymmetric,
p has no instances, and
x.class exists for every object x.

Broad definition

By the "broad" definition, an RDFS core structure is a structure (Ō, ϵ, ≤C, ≤P, r, c, p) where Ō is the set of
objects or resources, ϵ, ≤C, and ≤P are the instance-of, subclass-of and subproperty-of relations on Ō,
respectively, and r, c, and p are distinguished objects. Instances of c form the set C of classes, instances of p
form the set P of properties. The structure is subject to the following conditions:

(r~1) The subclass-of relation, ≤C, is a preorder on C.   (rdfs10) and (rdfs11)
(r~2) The subproperty-of relation, ≤P, is a preorder on P.   (rdfs5) and (rdfs6)
(r~3) The subsumption rule applies: (ϵ) ○ (≤C) ⊆ (ϵ).   (rdfs9)
(r~4) Only classes can have instances.
(r~5) Every object is an instance of r.
(r~6) Every class is a subclass of r.   (rdfs8)
(r~7) The objects r, c and p are pairwise distinct.
(r~8) The set C ∖ P is finite.
(r~9) p is a class.
The "narrow" definition is obtained from the "broad" one by defining the inheritance relation ≤ as the reflexive
closure of (≤C) ∪ (≤P) and making the following assertions: (o~2)(b): (≤) ○ (ϵ) ⊆ (ϵ), (o~4): helix classes are …,
(o~6): well-foundedness of ϵ on non-helix objects, (o~7)(b): C.ϵ ⊆ c.↥ ∪ c.↧, (o~9): c is a least helix class, and
(o~10): p is not from c.↥ ∪ c.↧.

Built-in RDFS core

The built-in RDFS core structure is an RDFS core structure (Ō, ϵ, ≤C, ≤P, r, c, p) shown by the following
diagram. We consider the set Ō to be equal to the RDF(S) vocabulary [66], so that objects are URI names. Let ≤
be the reflexive transitive closure of green links (implicitly directed upwards). The ϵ relation is obtained as (≤) ○
R ○ (≤) where R is the relation shown by blue links. Subsequently, ≤P and ≤C are the restrictions of ≤ to p.϶
and c.϶, respectively.
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‹≤P› ‹≤C›‹ϵ›

H lS

‹ϵ› … rdf:type
‹≤P› … rdfs:subPropertyOf
‹≤C› … rdfs:subClassOf
r … rdfs:Resource
c … rdfs:Class
p … rdf:Property

Note that the structure is fairly regular. It has single inheritance and single classification, yielding the .class
map. The only feature not allowed in canonical structures is strict inheritance between objects that are not
descendants of r. Similarly to the Python programming language, there is a minimal non-degenerate chain of 2
helix classes:

c = rdfs:Class < rdfs:Resource = r.
In addition to c, there is a second built-in metaclass, rdfs:Datatype.
Note:  The diagram shows the built-in structure according to RDF 1.1 Semantics [65] which adds rdf:HTML and
rdf:langString as 2 new built-in instances of rdfs:Datatype to the previous 2004 version [64].
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Interpretation by RDF graphs

In RDF Schema, data structures are encoded via RDF graphs. By an RDF graph we mean a structure (Ō, Ψ)
such that Ō is set of objects and Ψ is a subset of Ō  = Ō × Ō × Ō. Elements of Ō  are triples of objects. For a
triple t = (s,p,o), s is the subject, p is the predicate, and o is the object of t. The relational extent of p ∈ Ō is
denoted p.rel and defined as the set {(s,o) | (s,p,o) ∈ Ψ}.

We can now define an RDFS core graph as an RDF graph (Ō, Ψ) such that the following holds:
(1) Ō includes the RDF(S) vocabulary.

In particular, there are six distinguished objects ‹ϵ›, ‹≤C›, ‹≤P›, r, c and p. We also denote ϵ, ≤C, ≤P the
relational extents of ‹ϵ›, ‹≤C›, and ‹≤P›, respectively.

(2) The structure SS = (Ō, ϵ, ≤C, ≤P, r, c, p) is an RDFS core structure.
(3) The built-in RDFS core structure is a weak substructure of SS.

Since every object appears as a subject in some triple, an RDFS core graph is completely given by its set of
triples. The built-in RDFS core graph is the minimum set of triples. Any RDFS core graph is obtained by
(explicitly) adding new triples and subsequently applying entailment rules – the presence of some triples entails
the presence of other triples.

There are entailment rules that refer to distinguished objects not considered in the above description. (In
particular, the rdfs:domain and rdfs:range properties.) As a consequence, some of our RDFS core graphs
are in fact not allowed by RDF Schema. However, RDF Schema still only guarantees the conformance to the
"broad" definition of ontological structure of ϵ. None of (o~2)(b), (o~4), (o~6), (o~7)(b)[32], (o~9), or (o~10) is
asserted.

OWL 2

In OWL 2 Full [62], the structure of RDF Schema is extended by additional axiomatic triples. The extension is
then subject to the (additional) OWL 2 RL/RDF rules [61]. However, no conditions from the difference between
"narrow" and "broad" structures are asserted.

Built-in structure

The built-in structure contains additional 58 classes and 62 properties [45a]. There are four helix classes,
preordered by

{owl:Class, rdfs:Class} < {owl:Thing, rdfs:Resource}.
which indicates that RDFS helix classes have their OWL equivalents. Similarly, rdf:Property is equivalent to
owl:ObjectProperty and the metaclass rdfs:Datatype is equivalent to (the metaclass) owl:DataRange.
In total, there are 7 built-in descendants of rdfs:Class. However, one of them, owl:Nothing, is special
since it is asserted to (a) be a descendant of all classes and (b) to have no instances. That is, owl:Nothing is
meant to be an abstraction of the empty set. As a consequence, owl:Nothing is not regarded as a metaclass
(cf. [51]). There is still single inheritance between non-equivalent objects other than owl:Nothing. Single
classification is not preserved (not even up to equivalence) due to common instances of
owl:AnnotationProperty and owl:OntologyProperty.

The restriction of inheritance to RDF(S) vocabulary is the same as inheritance in the built-in RDFS core
structure. The restriction of instance-of is almost the same: the rdfs:Literal class is made an instance of
rdfs:Datatype by a single additional axiomatic triple [62a].

Powertypes

The interplay between inheritance, ≤, and membership, ϵ, provided by the powerclass map, .ec, and expressed
by

(≥) = (.ec) ○ (϶)
has been investigated in type-theoretic setting by Luca Cardelli [11]. Let us focus just on the structure induced
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by the typing relation and the power type operator. Then, if we denote ⅽ = r.ec, the following correspondence
can be established:

This document Type-theoretic setting [11]
Terminology Notation Notation Terminology

Inheritance ≤ ≤ / ⊆ / <: Subtyping
Object membership ϵ : Typing
Powerclass map .ec Power() Power type operator
Terminal objects T Values
Non-terminal objects ⅽ.϶ Types
Top of metalevel 2 ⅽ Type Type of types

Notes:
1. In [11], the ⊆ symbol is used for subtyping. The table shows also two other symbols that are common in the

literature.
2. The correspondence between inheritance (as defined in this document) and subtyping should be taken in

the restriction to non-terminal objects. A value is usually not considered to be a subtype of itself.
In the specialized document [50], Cardelli's six typing rules are distinguished (those that can be expressed by
just :, Power() and Type) to form an abstract power type system (O, ϵ, .ec, ⅽ). Subsequently, additional
conditions are provided so that the resulting family of structures is definitionally equivalent to basic structures of
ϵ such that x.ec is defined exactly for non-terminal objects x.

Powertypes in metamodelling

The Cardelli's notion of power types has been adopted by J. Odell in the field of metamodelling [37]. However,
whereas Cardelli's power type is an abstraction of powerset, Odell's power type is an abstraction of a non-trivial
partition. In particular, in metamodelling,

a type can have more than one power type, and
there is no typing relation (instance-of) between a type and its power type.

Since for every sets x, y, "y being a non-trivial partition of x" is a special case of "x being a non-member union of
y", the semantic shift can be diagrammatized by

(.ec)   ⇢   .ⱷ'(-1)
where .ⱷ' is a distinguished subrelation of the non-member union map .ⱷ.
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